Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols with aryl- and vinyl-boronic acids[†]

Hirokazu Tsukamoto,* Masanori Sato and Yoshinori Kondo

Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan. E-mail: hirokazu@mail.pharm.tohoku.ac.jp; Fax: +81-22-217-3906; Tel: +81-22-217-3906

Received (in Cambridge, UK) 13th February 2004, Accepted 16th March 2004 First published as an Advance Article on the web 15th April 2004

Allyl alcohols can be directly used for the palladium-catalyzed allylation of aryl- and vinyl-boronic acids without the aid of a base.

Palladium-catalyzed cross-coupling reaction with organometallics containing B, Mg, Zn, Sn, etc. has been a powerful tool for carboncarbon bond formation in organic synthesis.1 Among the organometallics, organoboronic reagents have been widely used because they are generally non-toxic, commercially available, stable and compatible with various functional groups.² Compared to the significant development of their Pd-catalyzed coupling reaction with aryl- and vinyl-halides or -sulfonates,² coupling reactions with allyl derivatives including halides,³ carboxylates⁴ and phenyl ethers⁵ have received only scattered attention. These allyl derivatives are usually prepared from the corresponding allyl alcohols and their coupling reaction commonly requires stoichiometric amounts of a base except for allyl phenyl ethers.⁵ The direct use of allyl alcohols for the cross-coupling reaction would omit the preparation steps of allyl derivatives and make the overall process of the coupling reaction atom economical.⁶ However, allyl alcohols themselves are rarely used because hydroxide is a poor leaving group. Rh-7 and Ni-catalysed⁸ coupling of allyl alcohols with arylboronic acids have been reported, but their allylating reagents are only limited to cinnamyl alcohols and 2-cyclohexen-1-ol, respectively. We describe here the first palladium(0)-catalyzed cross-coupling reaction of a wider range of allyl alcohols with aryland vinyl-boronic acids in the absence of a base.

First, cinnamyl alcohol 1a was examined as an allylating reagent for phenylboronic acid in the presence of 5 mol% tetrakis-(triphenylphosphine)palladium [Pd(PPh₃)₄] ⁹ (Scheme 1, Table 1, entries 1-4). To our surprise, the cross-coupling reaction readily proceeded upon heating at 80 °C in a sealed tube without any additive.10 At lower temperature, bis(cinnamyl)ether was formed as a by-product and no reaction was observed in the absence of the palladium catalyst (data not shown). Although dichloromethane was found to be the most effective solvent, toluene, 1.4-dioxane and THF could be employed as alternatives (entries 1-4). Arylboronic acids with electron-donating (Table 1, entries 5-9) or -withdrawing groups (entries 10-16) could also be coupled with 1a in satisfactory yields. Generally, the former boronic acids required a shorter reaction time and gave higher yields than the latter. In contrast to the Rh-catalyzed reaction,7 steric factors did not affect the yield. Ortho-, meta- and para-tolylboronic acids reacted equally (entries

$$\begin{array}{c} \begin{array}{c} \mathbb{R}^{3} \quad OH \\ \mathbb{P}h \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{1} \quad \text{or} \quad \mathbb{P}h \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{1} \\ \mathbb{R}^{2} \\ 1 a \text{-} e \\ \mathbf{2} a \text{-} b \end{array} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{1} \\ \begin{array}{c} 1.2 \text{ eq. } ArB(OH)_{2} \text{ or} \\ \overline{\text{Vinyl-B(OH)}_{2} \textbf{3A-Q}} \\ \underline{5 \text{ mol}\% \text{ Pd}(\mathbb{P}Ph_{3})_{4}} \\ \underline{5 \text{ mol}\% \text{ Pd}(\mathbb{P}Ph_{3})_{4}} \\ \underline{80 \text{ °C in sealed tube}} \\ \begin{array}{c} \mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H} \\ \mathbf{b} : \mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{H}, \mathbb{R}^{3} = \mathbb{M} \\ \mathbf{c} : \mathbb{R}^{1} = \mathbb{R}, \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H} \\ \mathbf{d} : \mathbb{R}^{1} = \mathbb{R}, \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H} \\ \mathbf{d} : \mathbb{R}^{1} = \mathbb{R}, \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H} \\ \mathbf{e} : \mathbb{R}^{1} = \mathbb{R}, \mathbb{R}^{2} = \mathbb{H}, \mathbb{R}^{2} = \mathbb{M} \\ \end{array}$$

Scheme 1 Coupling of cinnamyl alcohols **1a–e** and their isomers **2a,b** with organoboronic acids **3A–Q**.

† Electronic supplementary information (ESI) available: spectral data of compounds. See http://www.rsc.org/suppdata/cc/b4/b402256d/ 7–9). The highest yield was obtained in the coupling with 1-naphthylboronic acid **3N** (entry 17), whereas the lowest yield was obtained in the reaction with heteroarylboronic acid **3O** (entry 18) Allylation of *trans*- and *cis*-vinylboronic acid **3P** and **3Q** could be achieved in moderate yield and stereospecificity with respect to the boronic reagents (entries 19, 20).

Next, isomeric cinnamyl alcohols **2a,b** and substituted cinnamyl alcohols **1b–e** were examined as the allylating reagents for phenylboronic acid. α -Vinylbenzyl alcohol **2a**, a regioisomer of **1a**, gave the same product **4aA** in comparable yield (Table 1, entries 21 *vs.* 4). Although tertiary alcohol **2b** had a high reactivity, its parent cinnamyl alcohol **1b** decreased the reaction rate and product yield (entries 22, 23). Larger substituents at C-1 also resulted in slower reaction and lower yields (entries 24, 25). Introduction of a methyl group at the C-2 position in cinnamyl alcohol hindered the reaction (entry 26).

As with allyl alcohols, unsubstituted allyl alcohol **5a** and alkylsubstituted allyl alcohol **5b–g** were used for the allylation of 1-naphthylboronic acid (Scheme 2, Table 2). The reaction of 2-propenyl alcohol (**5a**) gave **6a** in good yield (Table 2, entry 1). The two regioisomers of crotyl alcohol (**5b** and **5c**) were converted into **6b**-*E*, **6b**-*Z* and **6c** with the same regio- and stereo-selectivity

Table 1 Coupling of cinnamyl alcohols and their isomers with organoboronic acids^a

Entry	Cinnamyl alcohol	Boronic acid	Product	t/h	Isolated yield (%)
1	1a	Phenyl 3A	4aA	3	61
2	1a	Phenyl 3A	4aA	3	68
3	1a	Phenyl 3A	4aA	3	69
4	1a	Phenyl 3A	4aA	3	80
5	1a	<i>p</i> -Methoxyphenyl 3B	4aB	4	78
6	1a	<i>p</i> -Methylthiophenyl 3 C	4aC	21	78
7	1a	<i>p</i> -Tolyl 3D	4aD	6	76
8	1a	o-Tolyl 3E	4aE	2	78
9	1a	<i>m</i> -Tolyl 3F	4aF	5	75
10	1a	<i>p</i> -Chlorophenyl 3 G	4aG	15	69
11	1a	<i>p</i> -Fluorophenyl 3H	4aH	11	58
12	1a	<i>p</i> -(Trifluoromethyl)phenyl 3I	4aT	7	63
13	1a	<i>p</i> -Formylphenyl 3J	4aJ	15	70
14	1a	<i>p</i> -Acetylphenyl 3K	4aK	19	78
15	1a	<i>p</i> -Cyanophenyl 3L	4aL	19	77
16	1a	<i>m</i> -Nitrophenyl 3M	4aM	19	50
17	1a	1-Naphthyl 3N	4aN	2	92
18	1a	3-Thiophene 30	4aO	6	28
19	1a	trans-β-Styryl 3P	4aP	8	53
20	1a	cis-Propenyl 3Q	4aQ	6	52
21	2a	Phenyl 3A	4aA	4	71
22	2b	Phenyl 3A	4bA	4	70
					$(E:Z 5:3)^{b}$
23	1b	Phenyl 3A	4bA	33	52
					$(E:Z 3:2)^{b}$
24	1c	Phenyl 3A	4cA	33	63
25	1d	Phenyl 3A	4dA	24	36
26	1e	Phenyl 3A	4eA	39	18
		-			$(E:Z 5:2)^{b}$

^{*a*} The reaction was carried out in THF (entry 1), 1,4-dioxane (entry 2), toluene (entry 3) and dichloromethane (entries 4–26). ^{*b*} E:Z ratio was determined by ¹H-NMR.

Scheme 2 Coupling of 1-naphthylboronic acid 3N with aliphatic allyl alcohols 5a-g.

Table 2 Coupling of 1-naphthylboronic acid with aliphatic allyl alcohols

Entry	Allyl alcohol	Product	<i>t</i> /h	Isolated yield (%)		
1	Allyl alcohol (5a)	6a	11	76		
2	Crotyl alcohol (5b)	6b + 6c	9	78		
				$(6b-E:6b-Z:6c = 6:1:3)^a$		
3	3-Buten-2-ol (5c)	6b + 6c	9	81		
				$(6b-E:6b-Z:6c = 6:1:3)^a$		
4	Prenyl alcohol (5d)	6d	48	72		
5	2-Methyl-3-buten-2-ol (5e)	6d	48	84		
6	Methallyl alcohol (5f)	6f	39	37		
7	2-Cyclohexen-1-ol (5g)	6g	24	23		
<i>^a E:Z</i> ratio was determined by ¹ H-NMR.						

(entries 2, 3). Similarly, the reaction of prenyl alcohol **5d** and its isomer **5e** gave the same product **6d** exclusively (entries 4, 5). The use of methallyl alcohol **5f** with a methyl group at C-2 like **1e** or cyclic allyl alcohol **5g** led to a lower yield (entries 6, 7).

Formation of the same products from allyl alcohols and their isomers may suggest the participation of π -allylpalladium intermediates in the reaction process. It is noteworthy that in spite of the heated reaction conditions, the formation of conjugated 1,3-dienes caused by Pd–H elimination from π -allylpalladium intermediates was not observed in the reactions of **1b,c**, **2b** and **5b–e.g.**^{4c,11}

The plausible mechanism for the cross-coupling reaction is outlined in Scheme 3. Oxidative addition of allyl alcohol **7** activated by the coordination with arylboronic acid **8** to the Pd(0) species¹² leads to a cationic π -allylpalladium intermediate **10** with an arylborate counter anion (path A, through **9**). This intermediate exists in equilibrium with arylboronic acid **8** and (π -allylphydroxo)-palladium complex **11**, which would smoothly undergo transmetalation to give diorganopalladium complex **12**.^{2,5,13} Reductive elimination of the coupling product **13** from **12** reproduces the palladium(0) complex. At this time, it is not possible to rule out a mechanism involving direct oxidative addition of allyl alcohol **7** to

Scheme 3 Possible catalytic cycle for the coupling reaction of allyl alcohols with arylboronic acids.

the palladium(0) complex to give **14** which has been approved in the Tsuji–Trost reaction¹⁴ of 1,3-dicarbonyl compounds with allyl alcohols as allylating agents¹⁵ (path B). However, no coupling products were obtained when cinnamyl alcohol **1a** was heated in THF with boronate complexes such as sodium tetraphenylborate and potassium phenyltrifluoroborate, which would not work as a Lewis acid.

The present study offers an extremely facile allylation procedure for aryl- and vinyl-boronic acids with a wide variey of functional groups. As for allyl alcohols, cinnamyl alcohols and their isomers, unsubstituted and alkyl-substituted allyl alcohols could be directly used. Neither preparation of allyl halides and esters nor addition of stoichiometric amounts of a base are required. Although the reaction required heating, it was not accompanied by the elimination of hydrogen from π -allylpalladium complexes to generate conjugated 1,3-diene. Further studies on the detailed mechanism of the cross-coupling reaction and application to deprotection of allyl ether, one of the most useful protecting groups in organic synthesis, are underway in our laboratory.

Notes and references

- 1 J. Tsuji, *Palladium Reagents and Catalysts*, John Wiley & Sons, Chichester, 1995; *Handbook of Organopalladium Chemistry for Organic Synthesis*, E. Negishi, ed., John Wiley & Sons, New York, 2002.
- 2 N. Miyaura, Top. Curr. Chem., 2002, 219, 12.
- M. Moreno-Mañas, F. Pajuelo and R. Pleixats, J. Org. Chem., 1995, 60, 2396; J. Cortés, M. Moreno-Mañas and R. Pleixats, Eur. J. Org. Chem., 2000, 239; M. Moreno-Mañas, R. Pleixats and S. Villarroya, Organometallics, 2001, 20, 4524; E. Paetzold and G. Oehme, J. Mol. Catal. A, 2000, 152, 69; L. Botella and C. Nájera, J. Organomet. Chem., 2002, 663, 46; D. A. Alonso, C. Nájera and M. Pacheco, J. Org. Chem., 2002, 67, 5588.
- 4 (a) J.-Y. Legros and J.-C. Fiaud, *Tetrahedron Lett.*, 1990, **31**, 7453; (b)
 E. Blart, J.-P. Genêt, M. Safi, M. Savignac and D. Sinou, *Tetrahedron*, 1994, **50**, 505; (c) Y. Uozumi, H. Danjo and T. Hayashi, *J. Org. Chem.*, 1999, **64**, 3384; (d) D. Bouyssi, V. Gerusz and G. Balme, *Eur. J. Org. Chem.*, 2002, 2445.
- 5 N. Miyaura, K. Yamada, H. Suginome and A. Suzuki, J. Am. Chem. Soc., 1985, **107**, 972.
- 6 B. M. Trost, Angew. Chem., Int. Ed. Engl., 1995, 34, 259; B. M. Trost, Science, 1991, 254, 1471.
- 7 G. W. Kabalka, G. Dong and B. Venkataiah, Org. Lett., 2003, 5, 893.
- 8 B. M. Trost and M. D. Spagnol, J. Chem. Soc., Perkin Trans. 1, 1995, 2083; K.-G. Chung, Y. Miyake and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 2000, 15.
- 9 The Pd₂(dba)₃ (2.5 mol%)–PPh₃ (10 mol%) catalytic system could be used instead of Pd(PPh₃)₄.
- 10 Typical procedure: a mixture of substrate (0.30 mmol), organoboronic acid (0.36 mmol), Pd(PPh₃)₄ (0.015 mmol) and dry dichloromethane (1 mL) was heated at 80 °C in a sealed tube under argon atmosphere. After being stirred at the same temperature for the time described in Table 1 and 2, the reaction mixture was evaporated and purified by preparative thin layer chromatography to give the allylated product.
- 11 Uozumi et al.^{4c} reported that the Pd(PPh₃)₄-catalyzed coupling reaction of acetyl derivative of 1c with phenylboronic acid 3A in the presence of Na₂CO₃ gave 4cA and 1-phenylbutadiene in 14 and 38% yield, respectively. Tsuji et al., reported that no elimination was observed with allyl alcohol under the Pd(OAc)₂–PPh₃ catalytic system in the absence of a base: J. Tsuji, T. Yamakawa, M. Kaito and T. Mandai, *Tetrahedron Lett.*, 1978, 24, 2075.
- 12 X. Lu, X. Jiang and X. Tao, J. Organomet. Chem., 1988, 344, 109; I. Stary, I. G. Stara and P. Kocovsky, *Tetrahedron Lett.*, 1993, 34, 179; I. Stary, I. G. Stara and P. Kocovsky, *Tetrahedron*, 1994, 50, 529; Y. Tamaru, Y. Horino, M. Araki, S. Tanaka and M. Kimura, *Tetrahedron Lett.*, 2000, 41, 5705; Y. Horino, M. Naito, M. Kimura, S. Tanaka and Y. Tamaru, *Tetrahedron Lett.*, 2001, 42, 3113; M. Kimura, Y. Horino, R. Mukai, S. Tanaka and Y. Tamaru, *J. Am. Chem. Soc.*, 2001, 123, 10401.
- 13 T. Moriya, N. Miyaura and A. Suzuki, Synlett, 1994, 149.
- 14 B. M. Trost and D. L. van Vranken, *Chem. Rev.*, 1996, **96**, 395; B. M. Trost, *Chem. Pharm. Bull.*, 2002, **50**, 1.
- 15 K. Manabe and S. Kobayashi, Org. Lett., 2003, 5, 3241 and refs. cited therein.