First stable 7,7,8,8-tetraaryl-o-quinodimethane: isolation, X-ray structure, electrochromic response of 9,10-bis(dianisylmethylene)-9,10 dihydrophenanthrene{

Shinichi Iwashita," Eisuke Ohta," Hiroki Higuchi," Hidetoshi Kawai," Kenshu Fujiwara," Kazunori Ono,^b Masami Takenaka^b and Takanori Suzuki^{*a}

aDivision of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan. E-mail: tak@sci.hokudai.ac.jp; Fax: 181-11-706-2714; Tel: 181-11-706-2714

b Asahi Kasei Electronics Co., Shioya, Hichiya, Hyuga 883-0062, Japan

Received (in Cambridge, UK) 19th April 2004, Accepted 14th July 2004 First published as an Advance Article on the web 10th August 2004

Oxidative cyclization of 2,2'-bis(dianisylethenyl)biphenyl yielded the dicationic salt of phenanthrene-9,10 diylbis(dianisylmethylium), which in turn afforded the severely congested title molecule as the first stable tetraaryl-oquinodimethane derivative upon reduction.

 o -Quinodimethane (oQDM; A, R = H) has been known as a short-lived reactive hydrocarbon and used as a versatile building block in synthetic chemistry.¹ From the viewpoint of multistage redox systems,² this skeleton serves as an attractive scaffold to construct a Wurster-type redox pair by attaching the proper end groups at the termini of the *exo*-methylene carbons $(A, R =$ charge-stabilizing group).³ Outstanding features of oQDM-based redox systems will be drastic geometric changes upon electron transfer when the end groups are bulky enough to adopt nonplanar structures. Thus, the two exo-methylenes in the neutral molecule will form a large torsion angle whereas the *o*-xylylene unit will become planar in the doubly charged ion to which the charged end groups being attached nearly perpendicularly as in B (Scheme 1). By considering the fact that such structural changes are favorable to constructing molecular response systems in terms of reversibility and bistability, 4.5 we have designed a novel electron donor 1 with four anisyl $(4-MeOC₆H₄)$ groups as cation-stabilizing end groups. Two extra benzene rings are annelated to the oQDM skeleton in order to prevent 1 from diminishing by cyclization to the benzocyclobutene-type or triaryldihydroanthracene-type isomers.6,7 Here we report the successful preparation of 1 as a first isolable member of tetraaryl-oQDMs along with its severely deformed structure determined by low-temperature X-ray analysis. A noteworthy feature is that 1 and 9,10-phenanthrenediyl dication 1^{2+} constitute a reversible redox pair exhibiting an electrochromic response with vivid change in color.

The reaction of 2,2'-bitolyl with BuLi in the presence of

{ Electronic supplementary information (ESI) available: ORTEP drawings of 1^{2+} and 2. See http://www.rsc.org/suppdata/cc/b4/b405837b/

TMEDA gave $2.2'$ -bis(lithiomethyl)biphenyl,⁸ which was then treated with 4,4'-dimethoxybenzophenone in THF. The resulting diol was treated with a catalytic amount of TsOH in refluxing benzene to give diolefin 2^9 in 50% yield over two steps. According to the X-ray analysis,¹⁰ 2 adopts a pseudo- C_2 symmetry with a twisting angle of 82.9° around the biphenyl axis (Figure S1†). Although the two benzylidene carbons are separated by 3.85 A˚ in this solid-state structure, the oxidative cyclization $11,12$ proceeded smoothly as follows. Upon treatment of diolefin 2 with 4 equivalents of NOBF₄ in CH₂Cl₂, the dark purple powder of dicationic salt $1^{2+}(BF_4^-)_2^9$ was obtained in 92% yield. When a smaller amount of oxidant was used, the same salt was obtained accompanied by recovery of the starting material 2, suggesting that the 1,4-dication formed by 2e oxidation of 2 underwent facile deprotonation to 1 which is more easily oxidized under the reaction conditions to 1^{2+} (Scheme 2).^{11,13}

Upon treatment of $1^{2+}(BF_4^-)_2$ with excess Zn powder in DME, the deep purple color disappeared rapidly, and αQDM 1⁹ was isolated as surprisingly stable yellow cubes in 92% yield after recrystallization from CH_2Cl_2 -hexane. Its thermal stability was demonstrated by quantitative recovery after refluxing for 24 h in toluene with no signs of electrocyclization to its isomers.14 In order to determine the detailed structural features of the first isolable derivative of 7,7,8,8-tetraaryl-oQDM, its X-ray analysis was conducted at -150 °C (Fig. 1).¹⁰ The most striking feature is the large torsion angle of 63.4° for the Ar₂C=C–C=CAr₂ unit although the twisting angle of the biphenyl skeleton is only 19.3° .¹⁵ Such deformation is surely induced to avoid the anomalous proximity of two inner anisyl groups, which are still close enough for $\pi-\pi$ interaction: they are overlapped in a face-to-face manner with an interplanar distance of 3.35 \AA and a dihedral angle of 13.2°. The closest contact between the aromatic carbons of opposite sides is 3.19 Å, which is much shorter than the sum of the van der Waals radii (3.40 Å).¹⁶

The observed deformation as well as intramolecular $\pi-\pi$ interaction seem to be responsible for raising the HOMO level of 1 $(E^{ox} +0.78$ V vs. SCE in MeCN; 2e process) compared with 2 $(+1.00 \text{ V})$. In fact, oQDM was easily oxidized to reproduce dication 1^{2+} , which was isolated as BF_4^- or $SbCl_6^-$ salt in 78% and 87% respective yield upon treatment with 2 equivalents of NOBF₄ or $(4-\text{BrC}_6\text{H}_4)_{3}\text{N}^+$ SbCl₆⁻. The reduction potential of 1^{2+} was observed in the far cathodic region $(+0.28 \text{ V})$, and the separation by 0.5 V corresponds to the electrochemical bistability of this couple. Such a large shift of redox peaks as well as one-wave 2e

Scheme 2 Oxidative cyclization of 2 to 1^{2+} .

Fig. 1 ORTEP drawing of 1 determined by X-ray analysis of CHCl₃ solvate at -150 °C.

Fig. 2 Continuous changes in the UV–Vis spectrum of 1 (3 mL, 1.52 \times 10^{-5} mol dm⁻³ in MeCN containing 0.5 mol dm⁻³ Bu₄NBF₄) upon constant-current electrochemical oxidation (28 μ A, 10 min interval) to $\hat{1}^{2+}$.

oxidation process have been commonly observed in the dynamic redox pairs⁵ undergoing reversible C–C bond making/breaking⁴ or drastic structural changes.17 Preliminary X-ray analysis on the dicationic salt $1^{2+}(\frac{1}{2})_2$ suggests that its phenanthrene unit adopts a planar structure.¹⁸

Not only the geometries but also their colors change drastically during the interconversion between 1 and 1^{2+} . Thus, when the electrochemical oxidation of 1 was followed using UV–Vis spectroscopy, the continuous and clean conversion was observed as shown in Fig. 2 with the development of a huge absorption band in the visible region ($\lambda = 400-650$ nm), demonstrating that this couple can serve as a new electrochromic material with high electrochemical bistability. Studies on other stable oQDMs are now under way.

Notes and references

- 1 J. L. Segura and N. Martín, Chem. Rev., 1999, 99, 3199.
- 2 K. Deuchert and S. Hünig, Angew. Chem., Int. Ed. Engl., 1978, 17, 875. By definition, the redox pair of A and B in Scheme 1 is assigned as the inverse-Wurster type.
- 3 The first o-terphenoquinone-type redox system was reported very recently: H. Kurata, Y. Takehara, T. Kawase and M. Oda, Chem. Lett., 2003, 538.
- 4 S. Hünig, M. Kemmer, H. Wenner, I. F. Perepichka, P. Bäuerle and A. Emge, Chem. Eur. J., 1999, 5, 1969; S. Hünig, S. Aldenkortt, P. Bäuerle, C. A. Briehn, M. Schäferling, I. F. Perepichka, D. Stalke and B. Walfort, Eur. J. Org. Chem., 2002, 1603.
- 5 T. Suzuki, H. Higuchi, T. Tsuji, J. Nishida, Y. Yamashita and T. Miyashi, Chemistry of Nanomolecular Systems, Chapter 1, Dynamic Redox Systems, eds. T. Nakamura, T. Matsumoto, H. Tada and K. Sugiura, Springer, Berlin, 2003.
- 6 G. Quinkert, W. -W. Wiersdorff, M. Finke, K. Opitz and F. -G. von der Haar, Chem. Ber., 1968, 101, 2302.
- 7 According to PM3 calculations on model compounds, 9,10-bis(diphenylmethylene)-9,10-dihydrophenanthrene $1'(Ar = Ph)$ has a smaller heat of formation $(192.25 \text{ kcal mol}^{-1})$ than the corresponding cyclobutene derivative, 1,2-dihydro-1,1,2,2-tetraphenylcyclobuta[l]phenanthrene 3' (208.12 kcal mol⁻¹). Although 9,9a-dihydro-9,9,10-triphenylanthracene is much more stable than 7,7,8,8-tetraphenyl-oQDM or 1,1,2,2 tetraphenylbenzocyclobutene, 6 this is not the case for the dibenzo analogues. The dihydroanthracene-type isomer was predicted to have the higher heat of formation (216.18 kcal mol⁻¹) than $1'$ and $3'$, probably due to the steric repulsion between phenyl substituents and fused benzene rings.
- 8 J. L. Stavinoha, G. W. Phillips, T. A. Puckette and T. J. Devon, Eur. Pat. 326268, 1989 (Chem. Abstr., 1990, 112, 98823z).
- 9 Physical data of new compounds are as follows. 1: mp 97-98 °C, ${}^{1}H$ NMR (acetone-d₆) δ 7.89 (2 H, d, J = 7.5 Hz), 7.29 (2 H, dd, J = 7.5, 7.5 Hz), 7.14 (2 H, d, $J = 7.5$ Hz) 6.75–6.83 (16 H, m), 3.84 (6 H, s), 3.72 (6 H, s); UV–Vis (MeCN) lmax 325sh (log e 4.04), 276 (4.67), 239 (4.75) nm. 1^{2+} (BF₄⁻)₂: mp 172–174 °C, ¹H NMR (CD₃CN) δ 9.07 (2 H, d, J = 8.4 Hz), $7.94 \times (2 \text{ H}, \text{dd}, J = 8.4, 8.4 \text{ Hz})$, $7.54 - 7.60 \times (10 \text{ H}, \text{m})$, $7.41 \times (2 \text{ H}, \text{dd}, J = 8.4, 8.4 \text{ Hz})$ d, $J = 8.4$ Hz), 7.06 (8 H, AA'XX'), 4.03 (12 H, s); UV–Vis (MeCN) λ_{max} 550sh (log *e* 4.50), 502 (4.76), 366 (4.11), 272 (4.48), 254 (4.65) nm. **2**:
mp 191–192 °C, ¹H NMR (CDCl₃) δ 7.23 (2 H, d, J = 7.5 Hz), 7.15 (2 H, dd, $J = 7.5, 7.5$ Hz), 7.06 (4 H, AA'XX'), 6.95 (2 H, dd, $J = 7.5, 7.5$ Hz), 6.83–6.88 (6 H, m), 6.77 (4 H, AA'XX'), 6.43 (2 H, s), 6.43 (4 H, AA'XX'), 3.79 (6 H, s), 3.70(6 H, s).
- 10 Crystal data for 1 ·(CHCl₃)₂: C₄₆H₃₈Cl₆O₄, *M* 867.52, tetragonal $I\bar{4}$ (No. 82), $a = 27.728(4)$, $c = 11.005(2)$ \AA , $U = 8461.0(1)$ \AA ³, D_c
($Z = 8$) = 1.362 g cm⁻¹, $T = 123$ K, $\mu = 4.49$ cm⁻¹. The final R value is 0.052 for 3232 independent reflections with $I > 3\sigma I$ and 509 parameters. Esds for bond lengths and angles are 0.006–0.008 Å and 0.4– 0.5° for non-hydrogen atoms. Due to the orientational disorder of the solvent in the crystal, several positional parameters were fixed in the final least-squares cycle. CCDC 237042. Data for $2: C_{44}H_{38}O_4$, M 630.78, orthorhombic *Pbca* (No. 61), $a = 10.1566(7)$, $b = 18.671(1)$, $c =$ 35.302(2) Å, $U = 6694.5(8)$ Å³, $D_c (Z = 8) = 1.252$ g cm⁻¹, $T = 153$ K, μ = 0.79 cm⁻¹. The final R value is 0.039 for 4939 independent reflections with $I > 3\sigma I$ and 433 parameters. Esds for bond lengths and angles are $0.002-0.003$ Å and $0.1-0.2^{\circ}$ for non-hydrogen atoms. The ORTEP drawing of 2 is given as Figure S1 in the ESI. CCDC 237043. See http://www.rsc.org/suppdata/cc/b4/b405837b/ for crystallographic data in .cif format.
- 11 A. Ohta and Y. Yamashita, J. Chem. Soc., Chem. Commun., 1995, 1761.
- 12 H. Higuchi, E. Ohta, H. Kawai, K. Fujiwara, T. Tsuji and T. Suzuki,
- J. Org. Chem., 2003, 68, 6605. 13 A. J. Moore, M. R. Bryce, P. J. Skabara, A. S. Datsanov, L. M. Goldenberg and J. A. K. Howard, J. Chem. Soc., Perkin Trans. 1, 1997, 3443; Y. Yamashita, M. Tomura, S. Tanaka and K. Imaeda, Synth. Metal, 1999, 102, 1730; R. Carlier, P. Hapiot, D. Lorcy, A. Robert and A. Tallec, Electrochim. Acta, 2001, 46, 3269.
- 14 Photoirradiation of 1 caused its isomerization to the 9,10-dihydroanthracene skeleton by electrocyclization and a subsequent 1,3-H shift. The details will be published as a full paper in due course.
- 15 The PM3 calculation on 9,10-bis(diphenylmethylene)-9,10-dihydrophenanthrene 1' reproduced the values for these angles $(59.7^{\circ}$ and 18.8° , respectively) so nicely that the observed solid-state structure is intrinsic to this skeleton but not due to the crystal packing force.
- 16 L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithac,a NY, 1960, p. 260.
- 17 D. H. Evans and R. W. Busch, J. Am. Chem. Soc., 1982, 104, 5057; H. Kurata, T. Tanaka and M. Oda, Chem. Lett., 1999, 749.
- 18 Crystal data: C₄₄H₃₆O₄I₆, M₁ 1390.2, triclinic \overrightarrow{PI} , $a = 11.502(2)$, $b =$ 11.612(2), c = 19.688(3) Å, α = 84.567(4), β = 88.131(4), γ = 84.500(4)°, $U = 2604.9(7)$ Å³, $D_c (Z = 2) = 1.773$ g cm⁻¹, $T = 293$ K. Due to the severe disorder of the iodine atoms, the R value is still quite high (11.3%) (Fig. S2, ESI). We are now trying to obtain other dication salts with different counter anions.