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Oxidative cyclization of 2,2’-bis(dianisylethenyl)biphenyl
yielded the dicationic salt of phenanthrene-9,10-
diylbis(dianisylmethylium), which in turn afforded the
severely congested title molecule as the first stable tetraaryl-o-
quinodimethane derivative upon reduction.

o-Quinodimethane (oQDM; A, R ~ H) has been known as a
short-lived reactive hydrocarbon and used as a versatile building
block in synthetic chemistry.1 From the viewpoint of multistage
redox systems,2 this skeleton serves as an attractive scaffold to
construct a Wurster-type redox pair by attaching the proper end
groups at the termini of the exo-methylene carbons (A, R ~
charge-stabilizing group).3 Outstanding features of oQDM-based
redox systems will be drastic geometric changes upon electron
transfer when the end groups are bulky enough to adopt nonplanar
structures. Thus, the two exo-methylenes in the neutral molecule
will form a large torsion angle whereas the o-xylylene unit will
become planar in the doubly charged ion to which the charged end
groups being attached nearly perpendicularly as in B (Scheme 1).
By considering the fact that such structural changes are favorable
to constructing molecular response systems in terms of reversibility
and bistability,4,5 we have designed a novel electron donor 1
with four anisyl (4-MeOC6H4) groups as cation-stabilizing end
groups. Two extra benzene rings are annelated to the oQDM
skeleton in order to prevent 1 from diminishing by cyclization to
the benzocyclobutene-type or triaryldihydroanthracene-type iso-
mers.6,7 Here we report the successful preparation of 1 as a first
isolable member of tetraaryl-oQDMs along with its severely
deformed structure determined by low-temperature X-ray analysis.
A noteworthy feature is that 1 and 9,10-phenanthrenediyl dication
121 constitute a reversible redox pair exhibiting an electrochromic
response with vivid change in color.

The reaction of 2,2’-bitolyl with BuLi in the presence of

TMEDA gave 2,2’-bis(lithiomethyl)biphenyl,8 which was then
treated with 4,4’-dimethoxybenzophenone in THF. The resulting
diol was treated with a catalytic amount of TsOH in refluxing
benzene to give diolefin 29 in 50% yield over two steps. According
to the X-ray analysis,10 2 adopts a pseudo-C2 symmetry with a
twisting angle of 82.9u around the biphenyl axis (Figure S1{).
Although the two benzylidene carbons are separated by 3.85 Å in
this solid-state structure, the oxidative cyclization11,12 proceeded
smoothly as follows. Upon treatment of diolefin 2 with 4
equivalents of NOBF4 in CH2Cl2, the dark purple powder of
dicationic salt 121(BF4

2)2
9 was obtained in 92% yield. When a

smaller amount of oxidant was used, the same salt was obtained
accompanied by recovery of the starting material 2, suggesting that
the 1,4-dication formed by 2e oxidation of 2 underwent facile
deprotonation to 1 which is more easily oxidized under the reaction
conditions to 121 (Scheme 2).11,13

Upon treatment of 121(BF4
2)2 with excess Zn powder in DME,

the deep purple color disappeared rapidly, and oQDM 19 was
isolated as surprisingly stable yellow cubes in 92% yield after
recrystallization from CH2Cl2–hexane. Its thermal stability was
demonstrated by quantitative recovery after refluxing for 24 h in
toluene with no signs of electrocyclization to its isomers.14 In order
to determine the detailed structural features of the first isolable
derivative of 7,7,8,8-tetraaryl-oQDM, its X-ray analysis was
conducted at 2150 uC (Fig. 1).10 The most striking feature is the
large torsion angle of 63.4u for the Ar2CLC–CLCAr2 unit although
the twisting angle of the biphenyl skeleton is only 19.3u.15 Such
deformation is surely induced to avoid the anomalous proximity of
two inner anisyl groups, which are still close enough for p–p
interaction: they are overlapped in a face-to-face manner with an
interplanar distance of 3.35 Å and a dihedral angle of 13.2u. The
closest contact between the aromatic carbons of opposite sides is
3.19 Å, which is much shorter than the sum of the van der Waals
radii (3.40 Å).16

The observed deformation as well as intramolecular p–p inter-
action seem to be responsible for raising the HOMO level of 1
(Eox 10.78 V vs. SCE in MeCN; 2e process) compared with 2
(11.00 V). In fact, oQDM was easily oxidized to reproduce
dication 121, which was isolated as BF4

2 or SbCl6
2 salt in 78% and

87% respective yield upon treatment with 2 equivalents of NOBF4

or (4-BrC6H4)3N
1?SbCl6

2. The reduction potential of 121 was
observed in the far cathodic region (10.28 V), and the separation
by 0.5 V corresponds to the electrochemical bistability of this
couple. Such a large shift of redox peaks as well as one-wave 2e

{ Electronic supplementary information (ESI) available: ORTEP drawings
of 121 and 2. See http://www.rsc.org/suppdata/cc/b4/b405837b/

Scheme 1 Redox pairs based on the oQDM skeleton.

Scheme 2 Oxidative cyclization of 2 to 121.D
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oxidation process have been commonly observed in the dynamic
redox pairs5 undergoing reversible C–C bond making/breaking4 or
drastic structural changes.17 Preliminary X-ray analysis on the
dicationic salt 121(I3

2)2 suggests that its phenanthrene unit adopts
a planar structure.18

Not only the geometries but also their colors change drastically
during the interconversion between 1 and 121. Thus, when the
electrochemical oxidation of 1 was followed using UV–Vis
spectroscopy, the continuous and clean conversion was observed
as shown in Fig. 2 with the development of a huge absorption band
in the visible region (l ~ 400–650 nm), demonstrating that this
couple can serve as a new electrochromic material with high
electrochemical bistability. Studies on other stable oQDMs are now
under way.
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Fig. 1 ORTEP drawing of 1 determined by X-ray analysis of CHCl3 solvate
at 2150 uC.

Fig. 2 Continuous changes in the UV–Vis spectrum of 1 (3 mL, 1.52 6
1025 mol dm23 in MeCN containing 0.5 mol dm23 Bu4NBF4) upon
constant-current electrochemical oxidation (28 mA, 10 min interval) to 121.
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