Switching between molecular switch types by module rearrangement: Ca^{2+} -enabled, H⁺-driven 'Off–On–Off', H⁺-driven YES and PASS 0 as well as H⁺, Ca²⁺-driven AND logic operations

John F. Callan,^{*a*} A. Prasanna de Silva^{*a*} and Nathan D. McClenaghan^{*b*}

^a School of Chemistry, Queen's University, Belfast, Northern Ireland BT9 5AG.

E-mail: j.callan@qub.ac.uk; a.desilva@qub.ac.uk; Fax: int+44 2890 382117; Tel: int+44 2890 974422 ^b Laboratoire de Chimie Organique et Organométallique, UMR 5802 CNRS, Universite Bordeaux 1, 351 cours de la Libération, 33405 Talence, France. E-mail: n.mc-clenaghan@lcoo.u-bordeaux1.fr;

Fax: int +33 540 006158; Tel: int+33 540 002827

Received (in Cambridge, UK) 21st April 2004, Accepted 23rd June 2004 First published as an Advance Article on the web 13th August 2004

Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.

During the formative phase of molecular-scale computational devices, it is important to explore the flexibility of current designs.¹ We now use our photoionic design² based on photoinduced electron transfer³ (PET) and fluorescence as a platform to demonstrate an enabled 'Off–On–Off' function^{4,5} in water. The present illustration means that a microscopic region containing a H⁺ concentration within a chosen window and a Ca²⁺ concentration exceeding a chosen threshold can be directly visualized. This case is not only biocompatible,⁶ but it can be switched to conventional YES, PASS 0 or AND logic behaviour^{3,7} by changing an input level or by reformatting its components. The latter method of switching between molecular switch types is unprecedented, though cases of reconfiguring logic with wavelength, ^{1*e*–*f*,⁸} the level^{9,10*a*} and nature^{7*d*,10*b*} of the chemical input as well as the output level^{10*a*} are known.

Molecular photoionic AND logic gates can be constructed by joining a fluorophore with two selective receptors by using two spacers. This corresponds to 'fluorophore-spacer1-receptor1spacer2-receptor2'2 or 'receptor1-spacer1-fluorophore-spacer2receptor₂¹¹ formats. The latter minimizes the distances over which PET must occur.¹² We use a tertiary amine receptor for H^+ as receptor₁, Tsien's BAPTA receptor¹³ for Ca²⁺ as receptor₂ and anthracene as the fluorophore. PET occurs to the fluorophore from each receptor when ion free. A methylene group each is used for spacer₁ and spacer₂. Spacers longer than one methylene group begin to retard PET (and hence reduce fluorescence switching efficiency) in 'anthracene-spacer-amine' systems.¹⁴ The more electron-rich BAPTA receptor is expected to perform better at longer separation distances from the fluorophore, especially if folded conformers can be arranged. The other combinatorial possibility of the 'fluorophore-spacer2receptor2-spacer1-receptor1' format is not examined for this reason. Switches 1[†] and 2[†] are designed and synthesized on this basis.

As expected for modular PET systems, **1** and **2** show typical anthracenic fluorescence (Table 1) when the two PET-active receptors are separately blocked with H^+ and Ca^{2+} . Hence, AND logic gate action can be seen for both **1** and **2** if we take excitation light as the power supply, H^+ as input₁ (high = $10^{-6.7}$ M and low = $10^{-9.7}$ M), Ca^{2+} as input₂ (high = $10^{-2.3}$ M and low = 0 M) and fluorescence as the output (Fig. 1). However if we choose high H^+ as $10^{-4.5}$ M then **1** becomes, at the simplest level, a H^+ -driven YES gate whose main dependence on the Ca^{2+} input is in the pK_a value. We do not develop the possibility of multistable output¹⁸ in this paper. Taking high H^+ as $10^{-4.5}$ M, **2** can be seen as a H^+ -driven PASS 0 gate essentially independent of Ca^{2+} . The

logic table in the Fig. 1 codes input₁ (H⁺) as v. high ($10^{-4.5}$ M), high ($10^{-6.7}$ M) and low ($10^{-9.7}$ M).

When we look across the whole range of pH values, **2** clearly shows a maximum fluorescence emission at pH 6.7 in the presence of Ca^{2+} (Fig. 1). The emission is far lower in the absence of Ca^{2+} . This is Ca^{2+} -enabled, H⁺-driven 'Off–On–Off' action. What causes the sharp fall of fluorescence at lower pH values? The anthracene unit is separated by a three-atom chain from the proximal oxyaniline. This is optimal¹⁹ for the approach of the phenyliminodiacetic acid moiety to the anthracene during its excited state lifetime. Intramolecular quenching of anthracene emission by carboxylic acid groups is known.²⁰ The distal oxyaniline and its acetic acid appendages are less likely to be involved in the quenching owing to the lower folding probability.²¹ An effect similar to that seen in **2** cannot occur for **1** since the anthracene unit is held apart from the proximal oxyaniline by a single methylene group.

The maximum quantum yield of fluorescence seen for 1 is low whereas 2 is normal in this regard. Protonated aminomethyl groups are strongly electron withdrawing¹¹ and hence this allows a residual PET to occur from the protonated oxyaniline to the electron-deficient anthracene. This effect cancels out in the case of 2 since the protonated aminomethyl group affects the anthracene and the protonated oxyaniline equally.

To conclude, the general PET design of AND logic gates can be modulated by structure-specific effects, particularly at low pH values, in logically useful ways.[‡]

We thank CNRS, DEL, InvestNI (RTD COE 40) and the EC (HPRN-CT-2000-00029) for support.

Table 1 Electronic spectral and ion-binding properties of 1 and 2^a

Property	1	2
$ \frac{\lambda_{abs}/nm}{10^{3}\varepsilon_{max}/mol^{-1}} dm^{3} cm^{-1} \\ \lambda_{exc}/nm \\ \lambda_{fu}/nm \\ \phi_{flu} at pH 6.7 \\ \log \beta_{Ca^{2+}} (low H^{+})^{c} \\ log \beta_{C_{2}^{2+}} (high H^{+})^{c} $	$\begin{array}{c} 398,\ 377,\ 359^{b}\\ 10.8,\ 10.8,\ 8.0^{b}\\ 377\\ 408,\ 428,\ 453\\ 0.023\\ 6.6^{d}\\ 6.6^{d} \end{array}$	389, 367, 350b9.8, 11.6, 8.7b369400, 419, 4430.256.26.0

^{*a*} 10⁻⁵ M **1** and **2** in water. Data such as fluorescence quantum yields (ϕ_{flu}) which can be deduced from the Fig. are not repeated here. The binding constant data are obtained from the analysis of fluorescence intensity–ion concentration profiles¹¹ (Fig.). ^{*b*} Average values in the four input states created by high and low Ca²⁺ and H⁺. The λ_{abs} values have a SD = 1 nm and the ε_{max} values have a SD = 600 mol⁻¹ dm³ cm⁻¹. ^{*c*} See concentration conditions in the main body of the text. ^{*d*} Value obtained¹⁵ for a closely related structure lacking the diethylamino substituent on the anthracene at pH = 7.2, I = 0.1 M (KCI).

Fig. 1 Two module combinations, formulae and fluorescence intensity (*I*)–pH profiles (triangles: no Ca^{2+} ; circles: high Ca^{2+}). Logic tables for these are shown between the two streams. The p K_a values (determined under high Ca^{2+} conditions) are given next to the appropriate groups in the formulae.

Notes and references

[†] Switch **1** was prepared as follows: BAPTA tetramethyl ester¹³ was alkylated with 9-anthracenylmethyl bromide using ZnBr₂.¹⁵ The diethylaminomethyl group was attached by the sequence of Vilsmeier formylation (POCl₃, DMF), reduction (NaBH₄), chlorination (SOCl₂) and amination (HNEt₂). The tetramethyl ester of **1** was hydrolyzed with KOH to yield **1**. Switch **2**¹⁶ was obtained by alkaline hydrolysis of its tetramethyl ester which was made by reductive amination of BAPTA tetramethyl ester aldehyde¹³ with 9-(*N*-methylaminomethyl)anthracene.¹⁷

‡ Resetting of photoionic gates is possible by adding complexants for a given ion input or by washing of solid-bound gates.

- Recent reviews: (a) A. P. de Silva, N. D. McClenaghan and C. P. McCoy, in *Molecular Switches* (Ed. B. L. Feringa), Wiley-VCH, Weinheim, 2000, p. 339; (b) F. M. Raymo, *Adv. Mater.*, 2002, **14**, 401; (c) V. Balzani, M. Venturi and A. Credi, *Molecular Devices and Machines*, Wiley-VCH, Weinheim, 2003, Ch. 9; (d) A. P. de Silva and N. D. McClenaghan, *Chem. Eur. J.*, 2004, **10**, 574; (e) Recent papers: F. M. Raymo and S. Giordani, *J. Am. Chem. Soc.*, 2002, **124**, 2004; (f) F. M. Raymo, R. J. Alvarado, S. Giordani and M. A. Cejas, *J. Am. Chem. Soc.*, 2003, **125**, 2361; (g) H. Tian, B. Qin, R.-X. Yao, X.-L. Zhao and S.-J. Yang, *Adv. Mater.*, 2003, **15**, 2104; (h) H.-M. Wang, D.-Q. Zhang, X.-F. Guo, L.-Y. Zhu, Z.-G. Shuai and D.-B. Zhu, *Chem. Commun.*, 2004, 670.
- 2 A.P. de Silva, H.Q.N. Gunaratne and C.P. McCoy, Nature, 1993, 364, 42.
- 3 Handbook of Electron Transfer in Chemistry, (Ed. V. Balzani), Wiley-VCH, Weinheim, 2000.
- 4 S. A. de Silva, B. Amorelli, D. C. Isidor, K. C. Loo, K. E. Crooker and Y. E. Pena, *Chem. Commun.*, 2002, 1360.
- 5 (a) A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, *Chem. Commun.*, 1996, 2399; (b) S. A. de Silva, A. Zavaleta, D. E. Baron, O. Allam, E. V. Isidor, N. Kashimura and J. M. Percarpio, *Tetrahedron Lett.*, 1997, **38**, 2237; (c) L. Fabbrizzi, M. Licchelli, A. Poggi and A. Taglietti, *Eur. J. Inorg. Chem.*, 1999, 35.
- 6 (a) R. Y. Tsien, Am. J. Physiol., 1992, 263, C723; (b) R. P. Haugland, Handbook of Fluorescent Probes and Research Products, 9th Edn., Molecular Probes, Eugene, OR, 2002; (c) A. P. de Silva, D. B. Fox, T. S. Moody and S. M. Weir, Trends Biotechnol, 2001, 19, 27.
- 7 (a) C. R. Cooper and T. D. James, J. Chem. Soc., Perkin Trans. 2, 2000, 963; (b) H. Miyaji, S. R. Collinson, I. Prokes and J. H. R. Tucker, Chem.

Commun., 2003, 64; (c) A. P. de Silva, G. D. McClean and S. Pagliari, Chem. Commun., 2003, 2010; (d) A. Saghatelian, N. H. Völcker, K. M. Guckian, V. S.-Y. Lin and M. R. Ghadiri, J. Am. Chem. Soc., 2003, **125**, 346; (e) A. S. Lukas, P. J. Bushard and M. R. Wasielewski, J. Am. Chem. Soc., 2001, **123**, 2440; (f) cf. C. A. Hunter and L. D. Sarson, Tetrahedron Lett., 1996, **37**, 699.

- R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, F. Kotzyba-Hibert, J.-M. Lehn and L. Prodi, J. Am. Chem. Soc., 1994, 116, 5741; (b) H. T. Baytekin and E. U. Akkaya, Org. Lett., 2000, 2, 1725; (c) K. Rurack, A. Koval'chuck, J. L. Bricks and J. L. Slominskii, J. Am. Chem. Soc., 2001, 123, 6205; (d) A. P. de Silva and N. D. McClenaghan, Chem. Eur. J., 2002, 8, 4935; (e) N. B. Sankaran, S. Banthia, A. Das and A. Samanta, New J. Chem., 2002, 26, 1529.
- 9 S. Alves, F. Pina, M. T. Albelda, E. Garcia-Espana, C. Soriano and S. V. Luis, *Eur. J. Inorg. Chem.*, 2001, 405.
- 10 (a) K.-P. Zauner and M. Conrad, Soft Comput., 2000, 5, 39; (b) A. S. Deonarine, S. M. Clark and L. Konermann, Future Gener. Comput. Syst., 2003, 19, 87.
- 11 A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, J. Am. Chem. Soc., 1997, 119, 7891.
- 12 G. L. Closs and J. R. Miller, Science, 1988, 240, 440.
- 13 (a) R. Y. Tsien, *Biochemistry*, 1980, **19**, 2396; (b) G. Grynkiewicz, M. Poenie and R. Y. Tsien, *J. Biol. Chem.*, 1985, **260**, 3440.
- 14 (a) J. C. Beeson, M. E. Huston, A. Douglas, T. K. Pollard and A. W. Czarnik, J. Fluoresc., 1993, 3, 65; (b) See also M. Onoda, S. Uchiyama, T. Santa and K. Imai, Luminescence, 2002, 17, 11.
- 15 A. P. de Silva and H. Q. N. Gunaratne, Chem. Commun., 1990, 186.
- 16 A. P. de Silva and N. D. McClenaghan, J. Am. Chem. Soc., 2000, 122, 3965.
- 17 C. Sangoe and E. Zimerson, J. Liq. Chromatogr., 1980, 3, 971.
- (a) R. Grigg and W. D. J. A. Norbert, J. Chem. Soc., Chem. Commun., 1992, 1298; (b) L. Fabbrizzi, M. Licchelli and P. Pallavicini, Angew. Chem., Int. Ed., 1998, 37, 800; (c) C. Di Pietro, G. Guglielmo, S. Campagna, M. Diotti, A. Manfredi and S. Quici, New J. Chem., 1998, 22, 1037; (d) F. Pina, M. J. Melo, M. A. Bernardo, S. V. Luis and E. Garcia-Espana, J. Photochem. Photobiol., A: Chem., 1999, 126, 65; (e) G. Dilek and E. U. Akkaya, Tetrahedron Lett., 2000, 41, 3721.
- 19 F. Hirayama, J. Chem. Phys., 1965, 42, 3165.
- 20 R. A. Bissell, PhD Thesis, Queen's University, Belfast, 1990.
- 21 M. A. Winnik, Chem. Rev., 1981, 81, 491.