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A combination of the newly synthesized and structurally
characterized compound, [MoO(O2)2(saloxH)] (saloxH2 ~
salicylaldoxime) as catalyst, H2O2 as terminal oxidant and
NaHCO3 as co-catalyst when stirred in CH3CN (10 cm3) at
room temperature (rt) shows a very pronounced efficiency
epoxidation of olefinic compounds, the method being green
and economical.

Epoxidation of olefins and arenes1,2 is a very outstanding
transformation in organic synthesis,1 since the epoxy compounds
are widely used as such,2 or in the preparation of a wide variety of
commodity chemicals.3 In this respect aqueous hydrogen peroxide
is possibly the best terminal oxidant after dioxygen from environ-
mental and economic considerations.3,4 Much work has been done
in homogenous catalytic epoxidation with hydrogen peroxide as
oxidant and a wide variety of transition metal complexes as
catalysts.3,5a,b Considering all this work5a,b it has recently been
realized that methyltrioxorhenium (MTO)5a,b with some additives
introduced by Sharpless and his co-workers6 might be regarded as
the best epoxidation method to date for fairly unreactive substrates,
with H2O2 as terminal oxidant. Strikingly, despite the success
(albeit moderate) of oxoperoxo-tungsten4 and other tungsten-based
catalysts5c,d,e the corresponding Mo-analogs are reportedly much
less successful as peroxidic (H2O2) epoxidation catalysts even under
special5k,l and sometimes harsh reaction conditions.4 Recent studies
of Thiel et al.7 also support this and reveal that peroxo complexes
of molybdenum with chelating pyrazolyl pyridine ligand systems
fail to activate H2O2, though the latter may be tuned in their
catalytic activity to activate alkyl hydroperoxides by introducing
electron withdrawing substituents in the said ligand system. In our
continued interest in using oxoperoxo-molybdenum and -tungsten
complexes as substrate oxidation catalysts8 we wondered at the
failure of the Mo-complexes to activate H2O2 and herein is
reported a new molybdenum complex, viz. PPh4[MoO(O2)2-
(saloxH)] (1)9 (saloxH2 ~ salicylaldoxime; for the structure10 of
1 see Fig. 1) as catalyst which can be used along with NaHCO3 as
co-catalyst11 to function as one of the (two) most efficient peroxidic
epoxidation catalysts known so far.12–14 Conversion percentage,
selectivity, catalyst turnover number (TON) achieved, along with
the cost input, extremely small amount of catalyst loading and
environment friendliness implied in our present work lead us to
claim that this method along with another method using a MnIII-
porphyrin system as catalyst13 displays a matchless efficiency14 in
catalytic epoxidation of olefinic compounds.

The structure of the catalyst (1) consists of discrete monomeric
anions, [MoO(O2)2(saloxH)]2, (saloxH2 ~ salicylaldoxime, a N,O
donor), and [PPh4]

1 cations held in the crystal lattice. The
geometry around the Mo atom can best be described as distorted
pentagonal bipyramidal (Fig. 1) with the axial sites being occupied
by the nitrogen (N1) and the oxo (O5) ligands. The phenolate
oxygen (O7) and the peroxo moieties (O1, O2, and O3, O4) define
the equatorial plane with the Mo atom displaced by 0.384(1) Å

from the equatorial plane towards the oxo oxygen (O5). This is
consistent with the observation that greater stability of the diperoxo
molybdate complexes is attained when the two peroxo groups
coordinate in the equatorial plane.15 The chelated salicylaldoximate
ligand fragment (C1–C7, N1, O6, O7) is essentially planar (rms
deviation 0.045 Å) and is approximately orthogonal to the
equatorial plane (O1–O4, O7); the dihedral angle between the
two planes is 79.0(1)u. In addition to the strong intramolecular
O–H…O hydrogen bond [O6…O3, 2.784(2) Å] weak intermole-
cular C–H…O hydrogen bonds between the anions, and the
cations and anions, stabilize the structure.

The present experimental procedure for the epoxidation reaction
involving a wide variety of olefin substrates is described as follows:
an acetonitrile (10 cm3) solution containing a given substrate (ca.
9.5 mmol), NaHCO3 (2.38 mmol), molybdenum catalyst
(0.005 mmol) and 30% H2O2 (47.5 mmol; 4.8 cm3) taken in a
flat bottom two neck reaction flask with one neck fitted with a
reflux condenser (to check evaporation), the other neck being
closed with a septum, was stirred at room temperature (25 uC) for a
definite period as quoted in the Table 1. As and when required an
aliquot of the reaction solution was withdrawn from, and H2O2

added to, the contents of the flask with the help of a syringe
through the septum. The withdrawn 0.5 cm3 solution was subjected
to multiple ether extractions and the extract concentrated also up to
0.5 cm3 from which 1 ml of solution was withdrawn with the help of
a gas syringe and injected to the GC port. The retention times of
the peaks were compared with those of commercial standards and
for GC yield calculation nitrobenzene was used as an internal
standard. The above experiment was repeated with Na2MoO4 (2)
and [MoO2(acac)2] (3) as catalyst for the sake of comparison. The
yields% obtained with 2 and 3 as catalysts under identical

{ Electronic supplementary information (ESI) available: determination of
GC yield. See http://www.rsc.org/suppdata/cc/b4/b408946d/

Fig. 1 The ORTEP view of complex 1, the catalyst with selected bond
distances (Å) and angles (u): Mo–O5, 1.693(2); Mo–O1, 1.952(2); Mo–O2,
1.929(2); Mo–O3, 1.946(2); Mo–O4, 1.964(2); Mo–O7, 1.983(2); Mo–N1,
2.374(2); O5–Mo–O2, 102.80(7); O5–Mo–O3, 103.33(7); O2–Mo–O3,
86.16(7); O5–Mo–O1, 103.80(7); O2–Mo–O7, 129.10(6); O5–Mo–N1,
174.49(7); O5–Mo–O7, 97.16(7).D
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conditions are 44, 30, 26% and 53, 36, 30% respectively, for the
representative entries, 1, 4 and 7. The isolated yield in a few cases
(Table 1) is obtained by multiple ether extractions of the reaction
solution after the reaction is over and then evaporating the ether
and acetonitrile by distilling at a mildly reduced pressure (using a
water aspirator) and kept over P2O5 in a desiccator and weighed
(when the GC yield was 98–99%) in a micro-balance and then the
identity of the products was confirmed by IR and NMR probing.
For lower yields% the liquid (for solid epoxides obtained from
liquid olefins, the former are simply dried and weighed) products
were subjected to preparative TLC and the highly intense spot was
cut out and plunged in CH2Cl2 which serves as an eluant and then
the resulting solution was dried over MgSO4, filtered through a
short silica gel pad and finally evaporated to yield only the epoxide
as residue by the distillation method as described above. The

residue was then kept over P2O5 for 15 min and then weighed. The
efficiency of this catalyst–co-catalyst combination extends to wide
varieties of substrates, viz., benzylic, carbocyclic, aromatic and
aliphatic systems which include functionalised as well as non-
functionalised olefins. Speed of reaction, yield, and turnover
frequency (TOF) follow the substrate order carbocyclic w

aromatic w aliphatic. Moreover, in the cases of aliphatic open
chain olefins, the functionalised olefins are easier to epoxidise than
the non-functionalised analogs. 1-Octene is most difficult to
epoxidise and next difficult substrate is styrene. The reactivity trend
obtained by us is similar to what other authors obtained, but in our
case the reactions occur at much faster rates, excepting 1-octene.

The enormous efficiency of our molybdenum catalyst in
epoxidation reactions on the background of the failure of Thiel’s
catalyst, which is structurally not much different from that of ours,

Table 1 Details of the catalytic epoxidation of olefinic compounds

Entry Substrate Product Time Conversiona (%)

Yield (%)

Yieldc

(%)
Selectivityd

(%)
TONe

(TOF)fGCb Isolated

(moles of catalyst : moles of substrate) ~ 1 : 2000

1 10 min 92 92 — 30 100 1840 (11 040)g

2 10 min 99 99 93 11 100 1980 (11 880)g

3 45 min 98 98 — 20 100 1960 (2610)g

4 3 h 84 84 — 24 100 1680 (560)

5 20 min 99 99 94 34 100 1980 (5940)g

6 1.5 h 99 99 — 65 100 1980 (1320)

7 45 min 70 70 64 20 100 1400 (1867)g

8 1 h 98 98 91 60 100 1960 (1960)

9 2.5 h 82 82 — 55 100 1640 (656)

10 15 h 97 97 — 8 100 1940 (129)

(moles of catalyst : moles of substrate) ~ 1 : 10 000, that is mol% of catalyst ~ 0.01

1 30 min 99 99 — 68 100 9900 (19 800)g

2 30 min 72 72 62 35 100 7200 (14 400)g

5 10 min 96 96 93 20 100 9600 (57 600)g

a A control experiment (omission of 1 as well as HCO3
2 ) does not show any conversion to epoxide or other probable product; b The detailed

calculation of GC yield is given as ESI. c This is the yield of the control experiment, excluding the catalyst 1 only, but not NaHCO3 which
remains in the reaction solution at the same 25 mol% concentration. When this control experiment uses NaHCO3 at a catalytic concentration
the conversion and yield% become negligible. d Selectivity is really spectacular in the given time frame. If the stirring is continued for still
longer periods, entries 4, 6, 7, and 8 start showing a peak due perhaps to the formation of diols. This, however, is another interesting area of
work and investigation into this is continuing. e TON ~ ratio of moles of product (here epoxide) obtained to the moles of catalyst used. f The
corresponding TOFs (TON h21). g Values extrapolated.
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in H2O2 medium, possibly stems from our use of the NaHCO3 co-
catalyst. The generated monoperoxycarbonate HCO4

2 (by reac-
tion with H2O2), which is capable of forcing highly facile reaction
with oxodiperoxomolybdate(VI) on the one hand and the olefins on
the other, helps not only the speedy and efficient production of the
epoxides, but also to stabilize the same (100% selectivity). This
hypothesis can be tested by using Thiel’s catalyst with NaHCO3 as
an additive. Other minor differences that exist between the two
catalyst structures should not induce such a difference in their
properties. Notwithstanding this, some features in the structure of
the present catalyst, especially, the presence of H-bonding centers in
both the anion and cation (see the structure description) make the
catalyst quite conducive to affording activated species incorporat-
ing both H2O2 and HCO4

2. However, in such a complex system, it
is very difficult to propose a plausible mechanism of the
epoxidation reaction involved. That the reaction proceeds via a
non-radical pathway has been concluded from the insensitivity of
the reaction towards azoisobutyronitrile (AIBN) and benzoqui-
none. Also, when the contents of the reaction flask are irradiated
with the help of a projected tungsten lamp the speed of the catalytic
reaction remains the same.
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