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Doubly N-fused hexaphyrins were synthesized from meso-aryl
substituted hexaphyrins and X-ray crystallography revealed
that syn- or anti-double N-fusion occurred, depending on the
positions of meso-substituents.

In recent years, expanded porphyrins have attracted considerable
interest because of their fascinating optical and electrochemical
properties as well as unprecedented reactivities that are not known
for porphyrins.1–3 Among these, N-fused structures were reported
for N-fused porphyrin (NFP),4a,b N-fused pentaphyrin(1.1.1.1.1)
(NFP5),3b and doubly N-fused pentaphyrin,4c as a consequence of
nucleophilic attack of a pyrrolic nitrogen atom at the b-position of
the neighboring pyrrole. Another mode of N-fusion reaction is
nucleophilic substitution of ortho-halogen at meso-aryl substituent
by an adjacent pyrrolic nitrogen atom, which is reported only for
trithiahexaphyrin(1.1.1.1.1.1)5 and meso-aryl perfluorinated hepta-
phyrin(1.1.1.1.1.1.1).3d These transformations are attractive, since
the incorporation of a 5,5,6-tricyclic ring system leads to creation of
a novel N-fused expanded porphyrin with unique optical and
electrochemical properties. Here, we report facile double N-fusion
reactions of meso-aryl substituted [26]hexaphyrins(1.1.1.1.1.1) 1,
which are more general, being aided by the outward-pointing two
pyrroles and reactive pentafluorophenyl substituents in the
hexaphyrins.3a

Initially, a solution of [26]hexaphyrin 1a in toluene was refluxed
in the presence of an excess amount of sodium acetate. The reaction
was rather slow but gave, after a week, one major product 2 as a
less polar red compound in 30% yield. When subjected to the
conditions used for similar N-fusion reaction of a trithiahexaphyrin
(refluxing in DMF in the presence of CuCl),5 1a was merely
decomposed. Refluxing of 1a in DMF without any additive for
1.5 h led to the formation of 2 with many other complicated
products. In this run, repeated tedious separations were needed to
isolate 2 in 37% yield. In the meantime, we found that 2 was formed
in 55% yield by refluxing 1 in chlorobenzene in the presence of
Fe(III) acetylacetonate. It is important to note that [28]hexaphyrin,
a reduced form of 1a, could not be converted into 2 under the
reaction conditions examined above.

The structure of 2 has been determined by X-ray analysis of its
trifluoroacetic acid salt, 2-TFA (2-bis(trifluoroacetate)) (Fig. 1a).
Important structural features are 1) N-fusion reaction occurred at
the 5- and 15-pentafluorophenyl substituents, causing two 5,5,6-
tricyclic ring units at anti-positions, 2) the fused pyrrolic nitrogens
are pointing outward in a rectangular macrocyclic conformation as
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Fig. 1 Crystal structures of (a) 2-TFA, (b) 3, and (c) 4. Some meso-aryl groups were omitted for clarity. Upper, top view; lower, side views.
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observed for 1, 3) the diagonal two pyrrolic nitrogens are
protonated to form a diprotonated species, and 4) the conjugated
electronic system is a 28p-electron non-aromatic network. The
5,5,6-tricyclic ring system constitutes a flat framework with mean-
plane deviation of 0.039 Å, while the overall doubly N-fused
hexaphyrin macrocycle exhibits a larger mean-plane deviation of
0.204 Å. A neutral form of 2 exhibits a parent molecular ion peak
at m/z ~ 1420 (calcd: m/z 1422) in the mass spectrum and mutually
coupled three pairs of doublets at 5.90 and 5.49 ppm, 5.09 and
4.68 ppm, and 4.69 and 4.24 ppm due to the pyrrolic b-protons and
a singlet at 20.0 ppm due to the inner NH protons in the 1H NMR
spectrum. The high chemical shifts of the pyrrolic b-protons and
the exceptionally low chemical shift of the inner NH proton may
suggest non-aromatic or rather anti-aromatic nature of the
macrocycle. The latter one also indicates an additional contribution
of strong hydrogen bonding between NH…N.The absorption
spectra of 2-TFA and 2 differ significantly from that of 1a in
respect of less intense Soret-like bands and the absence of a Q-band
like band, reflecting their non-aromatic nature (Fig. 2).{

Although we could not get crystals of neutral 2 suitable for X-ray
crystallography, we obtained good crystals of 3, which was
prepared from 1b. Interestingly, the X-ray crystal structure of 3
(Fig. 1b) is quite different from that of 2-TFA, in that all the
pyrrolic nitrogens are pointing inward towards the center of the
macrocycle and the fused tricyclic rings are laid over the marocycle
to form a symmetric distorted conformation. The 1H NMR
spectrum of 3 shows the pyrrolic b-protons in 4.33–5.12 ppm and
the inner NH proton at 22.1 ppm that are similar to 2, thus
suggesting that doubly N-fused hexaphyrins 2 and 3 take a similar
distorted conformation in their neutral forms. The absorption
spectrum of 3 is quite similar to that of neutral 2, again suggesting
its non-aromatic property.

N-fusion reactions of hexaphyrins 1c and 1d were also examined.
The former was practically unreactive under the same conditions,
indicating that the 2,6-dichlorophenyl substituent is much less
reactive compared with the pentafluorophenyl substituent. Hex-
aphyrin 1d3e was chosen to synthesize a syn-doubly N-fused
hexaphyrin, since syn-type double N-fusion reaction is only
possible for 1d. By refluxing 1d in DMF for 8 h, syn-doubly
fused hexaphyrin 4 and singly N-fused hexaphyrin 5 were obtained
in 3 and 17% yields, respectively. These products both exhibited
parent molecular ion peaks at the expected positions; m/z ~ 1330
for 4 and m/z ~ 1349 for 5, respectively. Heating a solution of 5 led
to the formation of 4. Such a mono N-fused hexaphyrin product
was also detected only in a trace amount in the reaction of 1a. The
solid-state structure of 4 determined by the X-ray diffraction
technique revealed a distorted saddle conformation with the two
inverted pyrroles, at which sites the N-fusion reaction took place
(Fig. 1c). The 5,5,6-tricyclic rings are both quite planar and directed

to the same side. The 1H NMR spectrum of 4 in CD2Cl2 exhibits
four doublets due to the peripheral outer b-protons in a range of
5.28–5.93 ppm and a broad signal due to the inner NH protons at
16.9 ppm. Interestingly, the inner b-protons are observed as two
doublets at exceptionally low fields 9.91 and 11.0 ppm. These data
again suggest a 28p-electron non-aromatic network, which is also
supported by the absorption spectrum of 4 that is similar to those
of 2 and 3.

In summary, appropriately meso-aryl substituted [26]hexaphyr-
ins are converted into doubly N-fused [28]hexaphyrins upon
heating. Doubly N-fused hexaphyrins thus formed take variable
conformations depending upon the degree of protonation and the
arrangement of N-fusion sites. The N-fusion reactivity of
hexaphyrin lies between those of porphyrin and pentaphyrin,
since such reaction is not known or impossible for porphyrins but
N-fusion reaction seems mandatory for pentaphyrins, since all
meso-aryl substituted pentaphyrins isolated so far have an N-fused
structure like NFP5.3b
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Notes and references

{ Crystal data for 2-TFA: C70H16O4N6F34?2(C4H7O)?6(C2F3O2) ~
2245.14, triclinic, space group P-1 (No. 2), a ~ 8.995 (2), b ~ 14.081
(3), c ~ 17.398 (3) Å, a ~ 73.42, b ~ 86.77, c ~ 85.54u, V ~ 2104 (6) Å3,
Z ~ 1, Dcalcd. 1.772 g cm23, T ~ 2150 uC, R ~ 0.057 (I w 3s(I)), RW ~
0.079 (all data), GOF ~ 1.029 (I w 3s(I)). CCDC 242616; Crystal data for
3: C96H80O6N6F22?4(O) ~ 1895.69, tetragonal, space group I4/m (No. 88),
a ~ 34.436 (8), b ~ 34.436 (8), c ~ 17.721 (7) Å, a ~ 90.00, b ~ 90.00,
c ~ 90.00u, V ~ 21014 (9) Å3, Z ~ 8, Dcalcd. 1.198 g cm23, T ~ 2150 uC,
R ~ 0.094 (I w 3s(I)), RW ~ 0.138 (all data), GOF ~ 1.147 (I w 3s(I)).
CCDC 242617; Crystal data for 4: C72H41O6N6F13?2(CHCl3) ~ 1571.89,
triclinic, space group P-1 (No. 2), a ~ 7.9826 (7), b ~ 15.903 (1), c ~
27.941 (2) Å, a ~ 77.88, b ~ 89.14, c ~ 83.14u, V ~ 3443 (5) Å3, Z ~ 2,
Dcalcd. 1.516 g cm23, T ~ 2150 uC, R ~ 0.100 (I w 3s(I)), RW ~ 0.152
(all data), GOF ~ 1.478 (I w 3s(I)). CCDC 242615. See http://
www.rsc.org/suppdata/cc/b4/b410011e/ for crystallographic data in .cif or
other electronic format.
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Fig. 2 UV/vis absorption spectra in CH2Cl2.
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