www.rsc.org/chemcomm hem**C**omm

Metalloglycomics: a new perspective upon competitive metal– carbohydrate binding using EPR spectroscopy \dagger

Rachel Codd

Centre for Heavy Metals Research, School of Chemistry, University of Sydney, NSW 2006, Australia. E-mail: r.codd@chem.usyd.edu.au; Fax: 161 2 9351 3329; Tel: 161 2 9351 4233

Received (in Cambridge, UK) 27th July 2004, Accepted 4th October 2004 First published as an Advance Article on the web 28th October 2004

Ternary complexes formed between calcium, the oxochromium(V) ion and N-acetylneuraminic (sialic) acid $(naH₆)$ of the form, $Ca(n)-oxoCr(v)$ –naH₆, have electronic structures and equilibrium distributions distinct from the binary $oxoCr(v)$ –na H_6 analogues, as illustrated by electron paramagnetic resonance (EPR) spectroscopy.

Sialic acids are a family of carbohydrates ubiquitous throughout the animal kingdom that are structurally defined as 9-membered carbon chains with an α -keto acid head group.¹ The most abundant sialic acid in humans is N -acetylneuraminic acid (naH $_6$; Scheme 1) which occurs predominantly as the terminal residue of protein- and lipid-based cell-surface glycoconjugates.¹ Structural features of na H_6 include a tert-2-hydroxycarboxylate 'head' group, which is deprotonated at physiological pH (p $K_a \sim 2.6$), and a glycerol 'tail'. The 2'-OH α -glycoside link from naH₆ to the penultimate glycoconjugate residue orients the glycerol tail towards the extracellular milieu inviting interactions with biometals. The interaction between $Ca(\theta)$ and naH₆ has been investigated previously;² the structure of a binary $(1:1)$ complex determined from 1 H and 13 C NMR spectroscopy (Scheme 1) proposes Ca(II) binds to naH₆ (as the free acid, where β : $\alpha \sim 92$: 8) via the carboxylate O^1 , O^R , O^7 and O^8 groups.³

More recently, both the tert-2-hydroxycarboxylate 'head' group of naH₆ (O^1 , O^2) in addition to the glycerol 'tail' (O^7 , O^8 , O^9) have been established as viable chelates of select transition metal ions using electron paramagnetic resonance (EPR) spectroscopy,⁴ NMR spectroscopy,⁵ or potentiometry;⁶ EPR spectroscopy in particular continues to emerge as a powerful tool in studying metal–bioligand speciation.^{4,7}

Strong EPR signals from solutions of Cr (VI) and glutathione (GSH) in the presence of excess naH₆ (Fig. 1; black) are attributed to a distribution of five-coordinate $\alpha \alpha$ Cr(v)–naH₆ complexes (d¹) in which two naH₆ units chelate the α xoCr(v) ion ([naH₆] > [oxoCr(v)]) via combinations of the O^1 , O^2 , O^7 , O^8 or O^8 , O^9 groups.⁴ The multiplicity of the central ^xCr ($x = 50$, 52, 54; $I = 0$) signal (Fig. 1; RHS) conveys the number (*n*) of protons ($I = \frac{1}{2}$; $2nI + 1$) in the second coordination sphere that perturb the Cr(v) redox (d_{xy}) orbital (e.g.; $n = 0$, bis- O^1 , \overrightarrow{O}^2 singlet; $n = 4$, bis- O^7 , \overrightarrow{O}^8 quintet; $n = 4$ 6, bis- O^8 , O^9 septet).⁴ There is a pH dependence of the distribution of $oxoCr(v)$ -naH₆ species whereby isomers of the O^1, O^2 coordinated species (g_{iso} = 1.9785; 1.9792) dominate under acidic conditions (Fig. 1a) and the series of O^7 , O^8 - and O^8 ,

{ Electronic supplementary information (ESI) available: Parameters from EPR simulation of all spectra shown in Fig. 1. See http://www.rsc.org/ suppdata/cc/b4/b411335g/

O⁹-coordinated species ($g_{iso} \sim 1.9800$) dominate at alkaline pH values (Fig. 1c, d). $\dot{ }$

This work shows that in the presence of excess $Ca(\Pi)$ ($[Ca(\Pi)]$: $[naH_6] = 10$) there is significant modulation to the Cr(v) EPR signals (Fig. 1; purple) which suggests the formation of ternary $Ca(I)$ – $oxoCr(V)$ –na H_6 complexes that have electronic structures (as indicated by variations in g_{iso} values and ¹H a_{iso} values) distinct from the binary $oxoCr(v)$ –naH₆ analogues.[†] Also, the pHdependent equilibrium distribution of $oxoCr(v)$ –naH₆ species clearly differs in the presence of $Ca(II)$; the appearance of complex multiplets at lower pH values in the ternary system, relative to the binary system (Fig. 1b), is likely due to the $Ca(\Pi)$ -induced lowering of the hydroxyl pK_a values of naH₆, thereby increasing the relative concentration of ternary $Ca(II)$ – $oxoCr(v)$ –na H_6 (diolato) species. These observations were investigated using EPR simulation procedures.§ The parent $Ca(\mu)$ – \overline{ox} o $Cr(\nu)$ –na H_6 signals (at pH values ≥ 4.49) simulated (correlation > 0.998) as comprising two singlets, two quartets, two septets (Table 1) and up to five additional high-field singlets (present in very low $(<3.5\%)$ concentrations at pH values ≥ 7.14).

Noteworthy differences between the binary $oxoCr(v)$ –naH₆ and ternary $Ca(n)$ – $oxoCr(v)$ –na H_6 systems are as follows. First, the presence of excess $Ca(\Pi)$ appears to mitigate against the formation of oxoCr(v)–naH₆ species involving coordination *via* the O^7 , O^8 diolato group, since (unlike the binary system) the simplest simulation model for the Ca(II)–oxoCr(v)–naH₆ system did not

Fig. 1 Room temperature EPR spectra of $oxoCr(v)$ –naH₆ species in the absence (black; pH values: 2.08 (a), 4.37 (b), 7.18 (c), 9.76 (d)) and presence (purple; pH values: 2.13 (a), 4.49 (b), 7.14 (c), 9.62 (d)) of $\hat{C}a(\mu)$ shown as first (LHS) and second (RHS) derivatives of absorption.

 $\ddot{\bar{8}}$

Table 1 EPR parameters for major $Ca(\Pi)$ – $oxoCr(\nu)$ – naH_6 species

Species	g _{iso}	Multiplicity	¹ H $aiso/$ H_{eq} ^a	¹ H $aiso/$ H_{eq}^a	¹ H $aiso/$ H_{eq} ^a
CaIa CaIb CaIIIa CaIIIb CaVIa CaVIb	1.9784 1.9790 1.9792 1.9794 1.9804 1.9806	Singlet Singlet Ouartet Ouartet Septet Septet	N/A^b 0.94/1 0.96/1 0.98/2 0.95/2	b b 0.84/1 0.83/1 0.79/2 0.73/2	\boldsymbol{h} \boldsymbol{h} 0.65/1 0.58/1 0.58/2 0.54/2 b N/A
(singlets).	^{<i>a</i> 1} H a_{iso} (G); H _{eq}	# $=$	magnetically equivalent protons.		

require the inclusion of a triplet, a quintet or a sextet to model the ternary analogues of $[CrO(O^1, O^2$-nahA)(O^7, O^8$-nahA3)]^{2^-}$ (n = 2), [CrO(Q^7 , O^8 -naH₃)₂]³⁻ (n = 4) or [CrO(O^7 , O^8 -naH₃)(O^8 , O^9 - $\text{rad}(H_3)$ ³⁻ (n = 5), respectively. Second, an excellent fit between the experimental and simulated spectra for the $Ca(II)-oxoCr(V)$ $naH₆$ system was obtained with the inclusion of two isomers each of the singlet, quartet and septet (Table 1). Individual EPR spectra for each species present in the Ca(II)– α OxoCr(v)–naH₆ equilibrium solution at $pH = 4.49$ are shown in Fig. 2 (RHS) aligned with the spectra from the related binary $oxoCr(v)$ –na H_6 species (LHS) at $pH = 4.37$. This spectral deconvolution highlights the marked differences in the relative concentrations of related species between the binary $oxoCr(v)$ –naH₆ and ternary Ca(II)–oxoCr(v)–naH₆ systems (where the absence of a species is represented by a dotted line). The sum of the component spectra (purple) in both the binary oxoCr(v)–naH₆ (pH = 4.37) and ternary Ca(II)–oxoCr(v)–naH₆ $(pH = 4.49)$ systems closely maps onto the experimental (black) spectrum (Fig. 2; lower trace). In the binary $oxoCr(v)$ –naH₆ system, while the presence of two singlets (Fig. 1a) is evident (ascribed to geometrical isomers of $[CrO(O^1, O^2$ -naH₄)]⁻ in which donor atoms are juxtaposed about the $oxoCr(v)$ trigonal bipyramid), $4,9$ only one isomer is observed (as determined by the

Fig. 2 Simulated EPR spectra for individual $oxoCr(v)$ –naH₆ species comprising parent solutions in the absence (LHS; $pH = 4.37$) and presence (RHS; pH $=$ 4.49) of Ca(II). The addition of simulated spectra (purple) is offset below the experimental spectra (black). Scheme 2 Proposed Ca(II)–oxoCr(v)–naH₆ complexes.

limits of EPR simulation) for the remaining linkage isomers. Third, the spectral fit in the $Ca(\Pi)-ox_0Cr(\nu)$ –naH₆ system required the inclusion of non-uniform ${}^{1}\text{H}$ a_{iso} values (\sim 0.59 G, 0.80 G, 0.96 G) for second coordination sphere protons within a single species (Table 1). This is distinct from the binary $oxoCr(v)$ –naH₆ system, where the conformational flexibility of the glycerol tail of naH₆ confers magnetic equivalence upon these protons (${}^{1}H$ a_{iso}) ~ 0.75 G).

These differences suggest that the interaction between $Ca(II)$ and naH₆, as modelled from NMR spectroscopic data (O^1 , O^R , O^7 , O^8 ³ restricts the conformational flexibility of the glycerol tail, effectively acting as an 'ionic lock'. The ternary $Ca(II)$ – $oxoCr(v)$ –na H_6 species (two geometrical isomers each) are assigned (Table 1) as $\{Ca_2[CrO(O^1, O^2-naH_4)_2]\}^{3+}$ (CaI (a,b)), ${Ca_2[CrO(O^1, O^2-naH_4)(O^8, O^9-naH_3)]}^{2+}$ (CaIII (a,b); Scheme 2) and ${Ca_2[CrO(O^8, O^9$-naH₃)₂]}^+$ (CaVI (a,b); Scheme 2). The increase in the strength of the sets of donor atoms $(bis-hydroxycarboxylate < hydroxycarboxylate-diolato < bis-$ diolato) correlates with the increase in the giso values for CaI (a,b) , CaIII (a,b) and CaVI (a,b) , respectively, which supports the species assignment, together with the signal multiplicities (Table 1).

The stoichiometry of the ternary $Ca(n)$ – $oxoCr(v)$ –naH₆ complexes $(2 : 1 : 2)$ is based upon the known $Ca(\Pi) : \text{naH}_6$ stoichiometry (1 : 1) determined from NMR experiments (even where $[Ca(\mu)] > [naH_6]$,^{2,3} and from studies of oxoCr(v)–bioligand systems that show the preferential formation of bis-chelate species (relative to mono-chelate species) where [ligand] : $|Cr(v)| \ge 2.5^{4,9}$ The absence of O^7 , O^8 -coordinated oxoCr(v)–naH₆ species in the ternary Ca(II)–oxoCr(v)–naH₆ system suggests that the O^7 group of naH₆ has a stronger affinity toward Ca (ii) than toward the $\overline{\text{oxoCr}}(v)$ ion. Conversely, based upon the presence of O^8, O^9 coordinated Ca(II)–oxoCr(v)–naH₆ species, the O^8 group of naH₆ has an affinity toward the $oxoCr(v)$ ion (and may be simultaneously binding $Ca(\Pi)$).

The magnetic inequivalence of the protons in the second coordination sphere of ternary $Ca(\Pi)$ – $oxoCr(\nu)$ –naH₆ complexes (Fig. 2; Table 1) is also explained by the 'ionic lock' mechanism, since the ${Ca(n)-naH₅}^+$ structure places H8, H9 and H9' in unique magnetic environments.³ These environments evidently increase the extent of orbital overlap between the second coordination sphere protons and the d_{xy} oxoCr(v) orbital, as measured by the increased ¹H a_{iso} values of the Ca(II)–oxoCr(v)– naH₆ complexes, relative to the binary $oxoCr(v)$ –naH₆ analogues.

Also, there are shifts in giso values for related species within the binary $oxoCr(v)$ –na H_6 and ternary $Ca(n)$ – $oxoCr(v)$ –na H_6 systems (Fig. 1). The g_{iso} values of the species involving tert-2hydroxycarboxylate coordination $([CrO(O^1,O^2-naH_4)_2]$ ² or ${Ca_2[CrO(O^1, O^2$-naH₄)₂]}$ ³⁺ in the binary or ternary system, respectively) move to higher field (lower g_{iso}) in the presence of

Ca(ii), while the g_{iso} values of diolato coordinated species ([CrO(O^8 , O^9 -naH₃)₂]³ in the binary or ternary system, respectively) move to lower field (higher g_{iso}) in the presence of Ca(II). This latter trend is consistent with $\left[\text{CrO}(\text{glycerol}(2-))_2\right]$ ⁻ ($g_{\text{iso}} = 1.9800$), where in the presence of Ca(II), $g_{iso} = 1.9803$. This suggests that in the case of $oxoCr(v)$ – diolato complexes, the presence of $Ca(I)$ modifies the polarizability of the donor oxygen atom (increases the 'hardness'), which correlates with an increase in the g_{iso} value. No change in g_{iso} value is observed for well characterised tert-2-hydroxycarboxylate $\operatorname{oxoCr}(v)$ complexes $([CrO(hmba(2-))_2]^{-}$ (hmba(2-) = 2-hydroxy-2-methylbutanoato), $g_{iso} = 1.9784$) in the presence of $Ca(I)$, which indicates a poor affinity of $Ca(I)$ towards an isolated hydroxycarboxylate group and suggests that the polyfunctionality of naH $_6$ is an important determinant of Ca (i) binding.

This is an elegant illustration of the use of EPR spectroscopy in studying competitive metal–carbohydrate binding (termed here 'metalloglycomics') that may have wide ranging implications in understanding transition metal–bioligand speciation in $Ca(\theta)$ -rich $\text{(and/or } \text{Mg}(\mathbf{u}))$ matrices that model the biological milieu. The author acknowledges a Sesqui New Staff Support grant and access to the EPR spectroscopy facility at the University of Sydney.

Notes and references

{ Solutions were prepared from aqueous stock solutions of naH6, $Na_2Cr_2O_7.2H_2O$, $Ca(NO_3)$ and GSH with final concentrations of Ca(II), Cr(VI), GSH and naH₆ of 1.0 M, 40 mM, 2 mM and 100 mM, respectively. Under these conditions, $[naH_6] > [\alpha x \text{ o} Cr(v)]$, since the $[oxoCr(v)]$ (formed prior to the ligand-exchange reaction) is dependent upon $[\hat{GSH}]$ (and $[\hat{GSH}] < [Cr(v)]$). The pH values of the solutions were adjusted with aliquots of NaOH prior to being made to volume with water. Under conditions where naH₆ is in excess of $[oxoCr(v)-GSH]$ (*i.e.*; favouring the ligand-exchange reaction), the concentrations of $oxoCr(v)$ – GSH species present are negligible as determined by the absence of oxoCr(v)–GSH signals ($g_{\text{iso}} = 1.9858$ and $g_{\text{iso}} = 1.996$).⁸ Although accurate 53Cr Aiso values of single species were not clearly resolved due to low signal : noise ratios (particularly in second derivative spectra), an

approximate ⁵³Cr A_{iso} value of 17.6 \pm 1.0 \times 10⁻⁴ cm⁻¹ is able to be determined from the spectrum of the ternary Ca(II)–oxoCr(v)–naH₆ system
at pH = 4.49 (data not shown) which is in the range of ⁵³Cr A_{iso} values typical of α xoCr(v)–bis-diolato (16.5 \times 10⁻⁴ cm⁻¹) and –hydroxycarboxylate (17.3 \times 10⁻⁴ cm⁻¹) complexes.^{4,9}

§ Continuous wave EPR spectra were recorded at room temperature on a Bruker (EMX) EPR spectrometer at X-band frequency (ca. 9.6 GHz), linked to a Bruker field controller (EMX 032T) and gaussmeter (EMX 035M) and simulated using the program WinSIM, developed at the National Institute of Environmental Health Science (available at http:// epr.niehs.nih.gov/pest.html). This program fits a simulated isotropic EPR spectrum for up to 10 species (with user defined EPR parameters $(g_{i\alpha})$ (g shift), number/type of nuclei, a_{iso} values) to the observed spectrum, using the simplex optimisation algorithm (number of restarts, 4; maximum iterations per restart, 600; fractional tolerance, $n < 0.01$).

- 1 C. Traving and R. Schauer, Cell. Mol. Life Sci., 1998, 54, 1330; T. Angata and A. Varki, Chem. Rev., 2002, 102, 439; A. Rosenberg, Biology of the Sialic Acids, Plenum Press, New York, 1995.
- 2 J.-P. Behr and J.-M. Lehn, FEBS Lett., 1973, 31, 297; J.-P. Behr and J.-M. Lehn, FEBS Lett., 1972, 22, 178; L. W. Jaques, B. F. Riesco and W. Weltner, Jr, Carbohydr. Res., 1980, 83, 21; M. F. Czarniecki and E. R. Thornton, Biochem. Biophys. Res. Commun., 1977, 74, 553; C. Long and B. Mouat, Biochem. J., 1971, 123, 829.
- 3 L. W. Jaques, E. B. Brown, J. M. Barrett, W. S. Brey, Jr and W. Weltner, Jr, J. Biol. Chem., 1977, 252, 4533.
- 4 R. Codd and P. A. Lay, J. Am. Chem. Soc., 2001, 123, 11799; R. Codd and P. A. Lay, Chem. Res. Toxicol., 2003, 7, 881; R. Codd, J. A. Irwin and P. A. Lay, Curr. Opin. Chem. Biol., 2003, 7, 213.
- 5 M. E. Daman and K. Dill, Carbohydr. Res., 1982, 102, 47.
- 6 M. Saladini, L. Menabue and E. Ferrari, J. Inorg. Biochem., 2002, 88, 61.
- 7 N. V. Nagy, T. Szabó-Plánka, A. Rockenbauer, G. Peintler, I. Nagypál and L. Korecz, J. Am. Chem. Soc., 2003, 125, 5227.
- 8 J. Aiyar, K. M. Borges, R. A. Floyd and K. Wetterhahn, Toxicol. Environ. Chem., 1989, 22, 135; A. Levina, L. Zhang and P. A. Lay, Inorg. Chem., 2003, 42, 767.
- 9 R. Bramley, J.-Y. Ji, R. J. Judd and P. A. Lay, Inorg. Chem., 1990, 29, 3089; R. Bramley, J.-Y. Ji and P. A. Lay, Inorg. Chem., 1991, 30, 1557; R. Codd and P. A. Lay, J. Am. Chem. Soc., 1999, 121, 7864.