First example of chiral *N*-heterocyclic carbenes as catalysts for kinetic resolution

Yumiko Suzuki,* Kaori Yamauchi, Kazuyuki Muramatsu and Masayuki Sato

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan. E-mail: suzuyumi@smail.u-shizuoka-ken.ac.jp; Fax: +81(0)54 264 5755; Tel: +81(0)54 264 5755

Received (in Cambridge, UK) 2nd August 2004, Accepted 17th August 2004 First published as an Advance Article on the web 11th October 2004

Chiral *N*-heterocyclic carbenes, which are derived from C_2 -symmetric 1,3-bis(1-arylethyl)imidazolium salts, catalyze enantioselective acylation of racemic secondary alcohols.

N-Heterocyclic carbenes (NHC) are efficient catalysts for reactions such as the benzoin condensation¹ and the Stetter reaction.² The use of chiral NHC has led to asymmetric benzoin condensation^{3,4} and the asymmetric-intramolecular Stetter reaction.^{3,5}

In our continuous studies on the NHC-catalysis,⁶ we explored the possibilities for an enantioselective acylation of secondary alcohols using chiral NHCs. Non-enzymatic catalysts for the kinetic resolution of racemic secondary alcohols have been extensively studied over the last decade. The development of chiral nucleophilic catalysts is one of the major breakthroughs,⁷ yet more selective, general, and easily accessible catalysts are in demand. Recently, the Nolan group⁸ and the Hedrick group⁹ independently reported the NHC-catalyzed transesterification/

DOI: 10.1039/b411855c

Scheme 1 C₂-Symmetric imidazolium salts.

acylation reaction. *N*-Heterocyclic carbenes are nucleophilic acylation catalysts and are readily synthesized. We assumed that chiral NHCs have the potential for kinetic resolution catalysis.

We selected the C_2 -symmetric imidazolium salt-derived NHCs as catalysts, since they can be easily prepared from inexpensive materials, namely, chiral amines, glyoxal, and formaldehyde or chloromethyl ethyl ether (Scheme 1).¹⁰

N-Heterocyclic carbenes were generated *in situ* from imidazolium salts and were used in the reactions. A mixture of catalytic amounts of imidazolium salts (3 mol%) and potassium *tert*butoxide (*t*-BuOK, 2.5 mol%) in ether was stirred for 30 min, followed by the addition of vinyl acetate and alcohols. The results are summarized in Table 1.

The acylation of 1-(1-naphthyl)ethanol (11) using (R,R)-1 at room temperature provided acetate 15 in 21% yield with 42% ee (entry 1). The unreacted 11 was recovered in 69% yield with 21% ee. At 0 °C, the selectivity was improved (entry 2). Under the same conditions at room temperature, the acylation of 1-phenylethanol (12) provided acetate 16 in 29% yield with 31% ee, and 12 was recovered in 36% yield with 20% ee (entry 4). The catalysts (R,R)-2 and (R,R)-3 showed less selectivities than (R,R)-1 (entries 3, 5). The reaction rate increased when imidazolium tetrafluoroborate (R,R)-4, instead of chloride (R,R)-1, was used in the acylation of 11 (entry 6). Imidazolium salt (R,R)-5 has a 2-naphthyl substituent on the *N*-ethyl group and had less selectivity than (R,R)-4 that has a 1-naphthyl substituent (entry 8).

These results led us to assume that an aromatic substituent on the *N*-ethyl group of NHC needs to be bulkier than naphthyl in order to achieve a better selectivity. Hence, we examined the reaction using (R,R)-**6**,**7**,**8** and (S,S)-**9** that have the aromatic substituents 9-anthryl, 1-(2-methoxynaphthyl), 1-pyrenyl, and 9-phenanthryl, respectively. In contrast, (R,R)-**6**,**7** had lower selectivities, and the reaction rates were slow. The 9-anthryl- and 1-(2-methoxynaphthyl) groups seem to hinder the attack of alcohol on the carbonyl carbon of intermediate **10** (Scheme 2). (R,R)-**8** and (S,S)-**9** showed comparable selectivities to (R,R)-**4**.

In summary, we have demonstrated for the first time that C_2 symmetric *N*-heterocyclic carbenes catalyze the enantioselective acylation of racemic secondary alcohols. When an *N*-substituent of carbene is a (*R*)-1-arylethyl group, the acylation of 1-arylethanols

Scheme 2 Enantioselective acylation of secondary alcohols.

Entry	Racemic alcohol	Cat.	х	Condition	Resolved alcohol	Acetate yield (%) ^a	Ee (%) ^b	Alcohol yield (%)	Ee (%) ^b
1	11	(<i>R</i> , <i>R</i>)-1	Cl	rt, 48 h	15	21	42 (<i>R</i>)	69	21 (S)
2	11	(<i>R R</i>)-1	Cl	0 °C, 48 h	15	21	51 (R)	79	11 (S)
3	11	(R, R)-2	Cl	rt, 18 h	15	15	19 (S)	83	1(R)
4	12	(R, R)-1	Cl	rt, 72 h	16	29	31 (<i>R</i>)	36	20(S)
5	12	(R, R)-3	Cl	rt, 72 h	16	27	18 (<i>R</i>)	74	9 (<i>S</i>)
6	11	(R, R)-4	BF_4	0 °C, 24 h	15	33	45 (<i>R</i>)	56	22 (S)
7	11	(R, R)-4	BF_4	−15 °C, 72 h	15	14	58 (R)	85	8 (S)
8	11	(R, R)-5	BF_4	0 °C, 18 h	15	43	14 (<i>R</i>)	47	14(S)
9	11	(R, R)-6	BF_4	0 °C, 48 h	15	6	23(R)	80	5 (S)
10	11	(R, R)-7	BF_4	$0 ^{\circ}\mathrm{C}$, 60 h and then rt, 48 h	15	4	13 (<i>R</i>)	84	<1
11	11	(R, R)-8	BF_4	0 °C, 12 h	15	27	49 (<i>R</i>)	73	20 (S)
12	11	(S, S)-9	BF_4	0 °C, 18 h	15	37	39 (S)	60	23(R)
13	13	(R, R)-4	BF_4	0 °C, 18 h	17	44	44 (<i>R</i>)	49	37 (S)
14	14	(R, R)-4	BF_4	0 °C, 48 h	18	14	9	84	2
^a Isolated yield. ^b Enantioselectivities were measured by HPLC using a Chiralcel OD column or a Chiralpac AS column.									

proceeded with *R*-selectivities, and in the case of a (*S*)-1-arylethyl group, the reaction proceeded with *S*-selectivities. Although the selectivities are not satisfactory, we anticipate that a further design and modification of a carbene structure will lead to the discovery of a practical catalyst for a kinetic resolution.

Notes and references

- (a) T. Ugai, R. Tanaka and S. Dokawa, J. Pharm. Soc. Jpn., 1943, 63, 296; (b) R. Breslow, J. Am. Chem. Soc, 1958, 80, 3719.
- 2 (a) H. Stetter, Angew. Chem., 1976, 88, 695; (b) H. Stetter and H. Kuhlmann, Org. React., 1991, 40, 407.
- 3 For a recent review on nucleophilic carbenes in asymmetric organocatalysis, see: D. Enders and T. Balensiefer, Acc. Chem. Res., 2004, 37, 534.
- 4 (a) J. C. Sheehan and D. H. Hunneman, J. Am. Chem. Soc., 1966, 88, 3666; (b) J. C. Sheehan and T. Hara, J. Org. Chem., 1974, 39, 1196;
 (c) D. Enders and K. Breuer, Helv. Chim. Acta, 1996, 79, 1217;
 (d) R. L. Knight and F. J. Leeper, Tetrahedron Lett., 1997, 38, 3611;
 (e) C. A. Dvorak and V. H. Rawal, Tetrahedron Lett., 1998, 39, 2925;
 (f) R. L. Knight and F. J. Leeper, J. Chem. Soc., Perkin Trans. 1, 1998, 1891;
 (g) D. Enders and U. Kallfass, Angew. Chem., Int. Ed., 2002, 41, 1743.

- 5 (a) D. Enders, K. Breuer, J. Runsink and J. H. Teles, *Helv. Chim. Acta*, 1996, **79**, 1899; (b) M. S. Kerr, J. Read de Alaniz and T. Rovis, *J. Am. Chem. Soc.*, 2002, **124**, 10298.
- 6 (a) A. Miyashita, Y. Suzuki, M. Kobayashi, N. Kuriyama and T. Higashino, *Heterocycles*, 1996, **43**, 509; (b) A. Miyashita, Y. Suzuki, K. Iwamoto and T. Higashino, *Chem. Pharm. Bull.*, 1998, **46**, 390; (c) Y. Suzuki, T. Toyota, F. Imada, M. Sato and A. Miyashita, *Chem. Commun.*, 2003, 1314.
- 7 (a) D. E. J. E. Robinson and S. D. Bull, *Tetrahedron: Asymmetry*, 2003, 14, 1407; (b) A. C. Spivey, A. Maddaford and A. J. Redgrave, *Org. Prep. Proced. Int.*, 2000, 32, 331.
- 8 (a) G. A. Grasa, R. M. Kissling and S. P. Nolan, Org. Lett., 2002, 4, 3583; (b) G. A. Grasa, T. Güveli, R. Singh and S. P. Nolan, J. Org. Chem., 2003, 68, 2812; (c) R. Singh, R. M. Kissling, M.-A. Letellier and S. P. Nolan, J. Org. Chem., 2004, 69, 209.
- 9 (a) G. W. Nyce, J. A. Lamboy, E. F. Connor, R. M. Waymouth and J. L. Hedrick, Org. Lett., 2002, 4, 3587; (b) G. W. Nyce, T. Glauser, E. F. Connor, A. Möck, R. M. Waymouth and J. L. Hedrick, J. Am. Chem. Soc., 2003, 125, 3046.
- 10 (a) W. A. Herrmann, L. J. Goossen, C. Köcher and G. R. J. Artus, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 2805; (b) A. J. Arduengo, III, R. Krafczyk and R. Schmutzler, *Tetrahedron*, 1999, **55**, 14523.