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Exposure of 1-alkynyl[p-(trifluoromethyl)phenyl](tetrafluo-
roborato)-l3-bromanes to sodium benzenesulfinate or sodium
trifluoromethanesulfinate in dichloromethane at 0 uC under
argon resulted in tandem Michael–carbene insertion reactions
to produce 1-sulfonylcyclopentenes selectively, with
concomitant formation of a small amount of rearranged
1-alkynyl sulfones.

Hypervalent 1-alkynyl(phenyl)(tetrafluoroborato)-l3-iodanes are
highly electron-deficient species,1 because of the powerful elec-
tron-withdrawing nature of the phenyl(tetrafluoroborato)-l3-
iodanyl group with a very large Hammett substituent constant
(sp) of 1.37.2 Hence, they serve as excellent Michael acceptors for a
variety of soft nucleophiles, including stable enolates of 1,
3-dicarbonyl compounds, carboxylates, phenoxides, azides, sulfi-
nates, thiolates, thiocyanates, halides, phosphates, amides, phos-
phines, and arsines.1 Because of the excellent nucleofugality of the
phenyl-l3-iodanyl groups,3 the Michael additions are generally
followed by the reductive elimination of l3-iodanyl groups in the
resulting vinyliodonium ylides, which generates reactive alkylidene
carbenes.

Recently, we reported the first synthesis of the related group 17
1-alkynyl-l3-bromanes 1;4 the method involves a BF3-catalyzed
ligand exchange of [p-(trifluoromethyl)phenyl](difluoro)-l3-bro-
mane5 with 1-alkynyl(trimethyl)stannanes in dichloromethane
and affords 1-alkynyl[p-(trifluoromethyl)phenyl](tetrafluorobor-
ato)-l3-bromanes 1 in good yields. 1-Alkynyl-l3-bromanes 1
should serve as more efficient Michael acceptors toward the attack
of nucleophiles than the iodine analogues, 1-alkynyl-l3-iodanes,
because of a greater Hammett substituent constant (sp ~ 1.63 for
PhBrBF4) of l3-bromanyl groups.6 In fact, a weakly nucleophilic
p-toluenesulfonate anion does not undergo Michael addition
toward 1-alkynyl(phenyl)-l3-iodanes,7 while the anion attacks the
b-acetylenic carbon atom of 1-alkynyl-l3-bromanes 1 under mild
conditions to give 1-alkynyl tosylates.4 Formation of 1-alkynyl
tosylates probably involves the intermediacy of free alkylidene
carbenes, produced by Michael addition of a tosylate anion and the
subsequent reductive elimination of the p-(trifluoromethyl)phenyl-
l3-bromanyl group. 1,2-Shift of a tosyloxy group in the alkylidene
carbenes produces 1-alkynyl tosylates. We report herein a tandem
Michael–carbene insertion (MCI) reaction between 1-alkynyl-l3-
bromanes 1 and sodium benzenesulfinate, which produces
1-(phenylsulfonyl)cyclopentenes 2 selectively under mild condi-
tions. The reaction competes with the formation of a small amount
of the rearranged alkynyl sulfones 3.

When the reaction of 1-decynyl[p-(trifluoromethyl)phenyl]-
(tetrafluoroborato)-l3-bromane (1a) (1.5 equiv.) with anhydrous

sodium benzenesulfinate was carried out in benzene at room
temperature for 1 h, 1-(phenylsulfonyl)cyclopentene 2a was
obtained in 53% yield, along with the formation of a small
amount of 1-decynyl phenyl sulfone (3a) (18%) (Scheme 1 and
Table 1, entry 1). Use of chloroform or dichloromethane as a
solvent at 0 uC increased the yields of the products with a slightly
increased selectively for 2a (entries 2 and 3).{ In THF, a higher
selectivity (90%) for the formation of 2a was observed, but with a
low yield (35%); under the conditions, comparable results were
obtained when 1-decynyl(phenyl)(tetrafluoroborato)-l3-iodane was
used instead of 1a.8 Use of tetrabutylammonium benzenesulfinate
in THF improved the yield up to 59% (entry 6). 1-Decynyl-l3-
bromane 1a is susceptible to hydrolysis with water, yielding
1-hydroxy-2-decanone; however, exposure of 1a to sodium
benzenesulfinate in water at 0 uC gave a 72 : 28 mixture of 2a
and 3a in 63% yield.

Tandem Michael–carbene insertion and rearrangement reactions
between 4-cyclohexyl-1-butynyl-l3-bromane 1b and sodium ben-
zenesulfinate in dichloromethane at 0 uC afforded a mixture of the
spiro cyclopentene 2b and the alkynyl sulfone 3b in a 67 : 33 ratio
(Scheme 2). High selectivity (96%) for cyclopentene formation was
observed in the reaction of 3-cyclopentyl-1-propynyl-l3-bromane
1c, which produced 3-(phenylsulfonyl)bicyclo[3.3.0]oct-2-ene (2c) in
86% yield. On the other hand, the reaction with 3,3-dimethyl-1-
butynyl-l3-bromane 1d selectively afforded 1-alkynyl phenyl
sulfone 3d in 84% yield. Vinyl sulfones serve efficiently as both
Michael acceptors and as 2p partners in cycloaddition reactions,9

and 1-(phenylsulfonyl)cyclopentenes have been shown to be useful
intermediates for the synthesis of complex natural products.10

Since the trifluoromethylsulfonyl group is one of the strongest
electron-withdrawing substituents with a large Hammett sp

constant of 0.96,11 syntheses of 1-(trifluoromethylsulfonyl)cyclo-
pentenes are of great interest. Reaction of the l3-bromane 1a with
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Table 1 Reaction of 1-decynyl-l3-bromane 1a with benzenesulfinatesa

Entry M Solvent Yield/%b 2a : 3ac

1 Na PhHd 71 74 : 26
2 Na CHCl3 88 75 : 25
3 Na CH2Cl2 86 79 : 21
4 Bu4N CH2Cl2 86 76 : 24
5 Na THF 35 90 : 10
6 Bu4N THF 59 86 : 14
7 Na H2O 63 72 : 28
a Unless otherwise noted, reactions were carried out using 1-decynyl-
l3-bromane 1a (1.5 equiv.) at 0 uC for 1 h under argon. b Total iso-
lated yields of 2a and 3a. c Determined by 1H NMR of the crude
reaction mixture. d Reaction was carried out at room temperature.
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sodium trifluoromethanesulfinate (triflinate) under comparable
conditions resulted in the formation of a mixture of vinyl
trifluoromethylsulfone (triflone) 4a{ and 1-alkynyl triflone 5a in
a ratio of 74 : 26 (Scheme 3).12 Michael addition of triflinate anion
to 3-cyclopentyl-1-propynyl-l3-bromane 1c afforded the bicyclooc-
tene 4b with high selectivity (w96%).

Formation of both 1-sulfonylcyclopentenes and 1-alkynyl
sulfones is indicative of the intermediacy of reactive alkylidene
carbenes 6, produced via Michael addition of sulfinate anions and
the subsequent elimination of p-(trifluoromethyl)bromobenzene, as
shown in Scheme 4. Generation of alkylidene carbenes 6 is well
established in the reactions of 1-alkynyl(phenyl)-l3-iodanes with
sulfinate anions.8,13 An intramolecular 1,5-carbon–hydrogen
insertion in alkylidene carbenes 6, yielding cyclopentenes 2, is
generally preferred over the 1,2-migration of sulfonyl groups which
affords 1-alkynyl sulfones 3 because of the low migratory aptitude
of sulfonyl groups.

In conclusion, we found that 1-alkynyl(aryl)-l3-bromanes serve
as efficient Michael acceptors for sulfinate anions and undergo
tandem Michael addition–carbene insertion reactions, yielding
1-sulfonylcyclopentenes.

Notes and references

{ Representative procedure (Table 1, entry 3): to a stirred solution of
1-decynyl-l3-bromane 1a (23 mg, 0.052 mmol) in dichloromethane (2 mL)
was added sodium benzenesulfinate (5.7 mg, 0.034 mmol) at 0 uC under
argon and the mixture was stirred for 1 h. The mixture was poured into
water and extracted with dichloromethane. Drying of the extract with
Na2SO4 and then concentration in vacuo afforded a crude oil, which was
purified by preparative TLC (hexane–ethyl acetate 7 : 3) to give a 79 : 21
mixture of 2a and 3a (8.3 mg, 86%). 2a:8 dH (400 MHz, CDCl3) 0.88 (t, J
6.6 Hz, 3H), 1.19–1.51 (m, 8H), 1.54–1.67 (m, 1H), 2.14–2.25 (m, 1H),
2.39–2.60 (m, 2H), 2.78–2.90 (m, 1H), 6.71 (br s, 1H), 7.54 (dd, J 7.6, 7.3
Hz, 2H), 7.63 (t, J 7.3 Hz, 1H), 7.90 (d, J 7.6 Hz, 2H). 3a:8 dH (400 MHz,
CDCl3) 0.88 (t, J 6.8 Hz, 3H), 1.17–1.37 (m, 10H), 1.55 (quint, J 7.3 Hz,
2H), 2.36 (t, J 7.2 Hz, 2H), 7.57 (dd, J 7.8, 7.3 Hz, 2H), 7.67 (t, J 7.3, 1H),
8.01 (d, J 7.8 Hz, 2H).
{ Selected data: 4a: colourless oil; nmax(neat)/cm21 2930, 1605, 1364, 1220,

1136, 624, 580; dH (400 MHz, CDCl3) 0.90 (t, J 6.6 Hz, 3H), 1.22–1.59 (m,
8H), 1.72–1.84 (m, 1H), 2.29–2.41 (m, 1H), 2.67–2.86 (m, 2H), 2.93–3.05
(m, 1H), 7.16 (br s, 1H); m/z (EI) 271 [(M 1 1)1, v1%], 201 (25), 153 (9),
137 (34), 131 (41), 107 (30), 95 (73), 81 (100), 71 (49), 67 (74), 55 (72);
HRMS calc. for C11H18O2F3S [(M 1 1)1] 271.0980, found 271.0981. 4b:
colourless oil; nmax(neat)/cm21 2956, 1608, 1362, 1219, 1134, 1062, 1016,
819, 627, 583; dH (400 MHz, CDCl3) 1.38–1.64 (m, 4H), 1.81–1.94 (m, 2H),
2.48 (br d, J 15.8 Hz, 1H), 2.91–3.09 (m, 2H), 3.40–3.52 (m, 1H), 7.01 (br s,
1H); m/z (EI) 240 (M1, 9%), 171 (86), 143 (5), 129 (27), 107 (99), 91 (61), 79
(100), 67 (100); HRMS calc. for C9H11O2F3S (M1) 240.0432, found
240.0429. 5a: colourless oil; nmax(neat)/cm21 2930, 2205, 1382, 1224, 1130,
1053, 656, 592; dH (400 MHz, CDCl3) 0.89 (t, J 6.5 Hz, 3H), 1.22–1.47 (m,
10H), 1.68 (quint, J 7.3 Hz, 2H), 2.55 (t, J 7.3 Hz, 2H); m/z (EI) 270 (M1,
1%), 228 (5), 214 (7), 174 (12), 159 (16), 145 (10), 121 (13), 107 (40), 95 (85),
81 (100), 67 (29); HRMS calc. for C11H17O2F3S (M1) 270.0901, found
270.0941. 5b: pale yellow oil; nmax(neat)/cm21 2957, 2203, 1382, 1224, 1129,
1042, 770, 678, 589; dH (400 MHz, CDCl3) 1.21–1.34 (m, 2H), 1.55–1.74
(m, 4H), 1.83–1.94 (m, 2H), 2.20 (sept, J 7.2 Hz, 1H), 2.56 (d, J 7.2 Hz,
2H); m/z (EI) 241 [(M 1 1)1, 7%], 240 (M1, 1), 212 (4), 199 (6), 172 (38),
143 (8), 105 (13), 91 (34), 79 (57), 69 (52), 67 (100); HRMS calc. for
C9H11O2F3S (M1) 240.0432, found 240.0434.
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Scheme 2 Conditions: l3-bromane (1.5 equiv.), PhSO2Na, CH2Cl2, 0 uC,
1 h, Ar.

Scheme 3 Conditions: l3-bromane (1.6 equiv.), CF3SO2Na, CH2Cl2, 0 uC,
5 h, Ar.
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