New reactions of β -diketiminatolanthanoid complexes: sterically induced self-deprotonation of β -diketiminato ligands[†]

Peter B. Hitchcock, Michael F. Lappert* and Andrey V. Protchenko

Received (in Cambridge, UK) 28th October 2004, Accepted 26th November 2004 First published as an Advance Article on the web 6th January 2005 DOI: 10.1039/b416549g

Attempted synthesis of sterically demanding bis- or tris- β -diketiminato complexes of lanthanoids resulted in ligand deprotonation and the formation of complexes containing both a "normal" and a deprotonated ligand; one of these on protonation gave the first cationic β -diketiminato–Ln complex.

The use of β -diketiminates as important monoanionic spectator ligands is well documented.¹ However, recent observations have shown that in selected instances such coordinated ligands may themselves undergo transformations. Examples include reduction of certain Li or Yb β -diketiminates to produce di- or trianionic analogues,² and deprotonation, resulting in the formation of dianionic ligand–metal complexes.³ The latter process occurred either (a) thermally, by alkane elimination from a Ca^{3c} or Sc^{3d} β -diketiminate containing an adjacent alkyl ligand (examples of a complex-induced proximity effect, CIPE⁴); or (b) for a Ge,^{3a} Sc,^{3b} or Ti^{3e} complex, by use of an external strong base—a carbanion^{3a,e} or $^{-N}(SiMe_3)_2$.^{3b}

We now report the new self-deprotonation reaction of the β -diketiminato ligand in sterically hindered lanthanoid (Ln) complexes, which resulted in formation of new compounds: (i) the thulium(III) complex [TmL(L^{dep})] (1), containing both the monoanionic β -diketiminato ligand [{N(C₆H₃Prⁱ₂-2,6)C(Me)}₂CH]⁻ (= L⁻) as well as its deprotonated derivative [L^{dep}]²⁻; (ii) the salts [TmL₂]X (**2a**, **2b**) *via* protonation of **1**; (iii) the unprecedented cyclometallated ytterbium(III) complex [YbL'(L'^{dep})] (**4**) (L' = [{N(SiMe₃)C(Ph)}₂CH]⁻) where L'^{dep} is the *C*,*N*,*N*'-tridentate bicyclic ligand.

Scheme 1 Synthesis of 1 and 2 (Ar = $C_6H_3Pr_2^{i}-2,6$).

† Electronic supplementary information (ESI) available: synthesis and characterisation of **1**, **2b**, **3**, **4** and **4a**. See http://www.rsc.org/suppdata/cc/b4/b416549g/

*m.f.lappert@sussex.ac.uk

The preparation of the complexes 1, 2a and 2b is outlined in Scheme 1; the yields of the crystalline compounds were not optimised. A Tm(III) iodide-KL reaction was initially carried out in a 1:2 molar stoichiometry, in an attempt to make TmL₂I, but 1 was the only crystalline product. It may be that successive transient intermediates along the pathway to 1 were [TmL₂]I and [TmL₂][L]. It is noted that a bis(β -diketiminato)ytterbium(III) complex was not accessible from $YbCl_3 + 2LiL$ in thf, $[YbCl_2(L)(thf)_2]$ being isolated;⁵ the radii of the Tm³⁺ (0.880 Å) and the Yb³⁺ (0.868 Å) are almost identical. Complex 1 was also isolated in a modest yield upon the work up of a reaction mixture of [TmI2(dme)3] and 2KL in thf. The CH₂ group of 1 was readily protonated, using an appropriate [HNR₂R'][BAr'₄]; the salt 2a was thermally unstable and its formation was confirmed by ¹H NMR spectroscopy, while the salt 2b was isolated in a good yield. Complexes 2a and 2b are rare examples of salts containing a homoleptic bis-β-diketiminatometal cation. A bis(β -diketiminato)thulium iodide Tm(L')₂I has been reported.⁶

The molecular formulae of complexes **1**, **2a** and **2b**, as shown in Scheme 1, were consistent with their elemental analyses and ¹H-NMR spectra (19 CH₃ signals, in the wide range δ 241 to δ –245 ppm, for **1**; but only 10 such signals for **2a** or **2b**). Single crystal X-ray data were obtained for **1**[‡] (Fig. 1) and **2b**.[‡]

Fig. 1 ORTEP drawing and atom numbering scheme for complex **1** (20% ellipsoids; non-coordinated LH and toluene solvate molecules are not shown). Selected bond lengths (Å) and angles (°): Tm–N1 2.273(2), Tm–N2 2.301(2), Tm–N3 2.207(2), Tm–N4 2.161(2), N1–C1 1.317(3), N2–C3 1.345(3), C1–C2 1.430(4), C2–C3 1.384(4), N3–C30 1.401(3), N4–C32 1.400(3), C30–C31 1.350(4), C31–C32 1.493(3), C30–C33 1.524(3), C32–C34 1.330(4), Tm–C30 2.717(3), Tm–C31 2.826(3), N1–Tm–N2 87.25(7), N3–Tm–N4 96.35(7).

The thulium atom in molecule 1 is at the spiro-junction of two N,N'-chelating ligands: N1 and N2 of L⁻ and N3 and N4 of the deprotonated [L^{dep]²⁻. The TmL ring has the boat conformation} (κ^2 -ligand-to-metal bonding mode) and is significantly, but far from completely, π -delocalised (e.g., the endocyclic N-C bond lengths are unequal, with N1-C1 almost 0.03 Å shorter than N2-C3). The Tm(L^{dep}) moiety is best described as implicating η^3 -1-azaallyl (N3–C30–C31) and amido(N4)-centred bonds to the Tm atom; thus, the Tm···C30 and Tm···C31 contacts are near the upper range of the Tm-C(η^5 -Cp) distances (2.598–2.829, av. 2.670 Å) of $[TmCp_3]$,⁷ whereas the Tm···C32 contact in 1 is longer at 2.908(3) Å. The Tm-N4 bond length is ca. 0.026 Å shorter than the average Tm-N distance of 2.187 Å in the tetracoordinated Tm(III) amide $[Tm{N(SiMe_2CH_2)_2}_3(\mu-Cl)Li(OEt_2)_3]$ (2.179(2)-2.189(2) Å).8 The ligand [Ldep]2- has previously featured in $[Ge(L^{dep})(H)B(H)(\mu-H)_2Li(OEt_2)_3]^{3a}$ and $[Ti(L^{dep})(NC_6H_3Pr_2^{i}-H_2)^{3a}]^{3a}$ 2,6)(OEt₂)],^{3e} but only the latter has closely similar $M(L^{dep})$ geometric parameters (apart from the shorter M-N bond lengths) to those in **1**. The ligand bite angle for L^{dep} is 9.1° wider than for L, thus facilitating the $Tm \cdots C(30 \text{ or } 31)$ close contacts in $Tm(L^{dep})$.

The crystalline salt **2b** comprises a well-separated ion pair; there are two independent pairs. The geometric parameters of the cation are closely similar to those in the Tm(L) moiety of **1**, with Tm–N bond lengths of 2.232 Å (range 2.214(7)–2.250(7) Å) and ligand bite angles of 89.2(3)° and 85.2(2)° (molecule A) or 88.8(2)° and 89.1(2)° (molecule B).

Homoleptic Ln(III) β -diketiminates are rare, doubtless for steric reasons.⁹ Attempts to make a bis(β -diketiminato)cerium alkyl from Ce(L')₂Cl and LiCH(SiMe₃)₂ yielded [Ce(L'){CH-(SiMe₃)₂}₂].⁶ Thus we sought an alternative oxidative approach to an Ln(L')₃ complex, based on an analogy with a strategy which had successfully been employed to make sterically encumbered tricyclopentadienides of Sm(III) and U(IV).¹⁰ The first step was to prepare [Pb(L')₂] (**3**) (see supplementary data†), which is the first structurally characterised Pb β -diketiminate and an unprecedented group 14 metal(II) bis(κ^2 - β -diketiminate).¹

The preparation of the cyclometallated ytterbium(III) β -diketiminate [Yb(L')(L'^{dep})] (4) is illustrated in Scheme 2. In one experiment, a product 4a, a co-crystal of 4 (76%) and Yb(L')₂ (24%), was isolated in place of 4, as revealed by crystallography.‡ It is possible that a transient intermediate in the [YbL₂]–3 system was [Yb(L')₂][L'], in which the third loosely attached ligand deprotonates one of the Me groups activated by the Yb…Me agostic interaction. Examples of base-induced cyclometallation of bis(trimethylsilyl)amidometal complexes are known, including the

Scheme 2 Syntheses of 4.

conversion of $[Yb{N(SiMe_3)_2}_3]$ into $[Yb{N(SiMe_3)_2}_2{N(SiMe_3)-Si(Me)_2CH_2}Na(thf)_3]$ (5).¹¹

The structure of the crystalline compound **4**, determined by single crystal X-ray diffraction,‡ is illustrated in Fig. 2. The central Yb atom is joined through N3 and N4 to form a boat-shaped β -diketiminatoytterbium moiety; and *via* N1, N2 and C19 to the bicyclic ligand [L'^{dep}]²⁻. The endocyclic bond distances and angles of the 4-membered ring of **4** are similar to those in the corresponding ring of **5**.¹¹ The Yb–N3(N4) distances are shorter than in [Yb(L')₂] (av. 2.410 Å),¹² in agreement with the difference in Yb³⁺ and Yb²⁺ ionic radii. The bonding mode in the Yb(L') moiety of **4** is close to η^5 , the dihedral angle between the N3–C22–C24–N4 and N3–Yb–N4 planes being 63.7° (*cf.*,¹² 10.8° in the κ^2 -bonded [Yb(L')₂] and 67.5° in the η^5 -bonded [Yb{N(SiMe_3)C-(C₆H₄Me-4)CHC(adamantyl-1)N(SiMe_3)}].

The structure of crystalline **4a** showed that the ligand L' in the molecule of Yb(L')₂ adopts the same η^5 -bonding mode as in **4**, in contrast to the κ^2 -bonding found in the crystal of isolated [Yb(L')₂].¹²

In conclusion, the following observations are noteworthy. (1) A β -diketiminato ligand in a highly encumbered Ln complex may undergo a facile deprotonation of the type $2[A]^- \rightarrow [A^{dep}]^{2-} + [AH]$ (A = L' or L). (2) Protonation of the thulium complex $[TmL(L^{dep})]$ (1), using an appropriate ammonium tetraarylborate, is a convenient route to the first homoleptic cationic lanthanoid salt **2a** or **2b**, notable for containing a potentially highly electrophilic cation. (3) The compound $[Yb(L')(L'^{dep})]$ (4) is significant for possessing the new bicyclic ligand $[L'^{dep}]^{2-}$, which may well be found more widely. (4) The oxidative route, based on a Pb(II) reagent, is likely to find more general application, particularly for complexes of metals having available adjacent oxidation states.

We thank EPSRC for the award of a fellowship to A.V.P.

Fig. 2 ORTEP drawing and atom numbering scheme for complex 4 (20% ellipsoids). Selected bond lengths (Å) and angles (°): Yb–N1 2.265(2), Yb–N2 2.289(2), Yb–N3 2.328(2), Yb–N4 2.272(2), Yb–C19 2.406(3), N1–C1 1.348(3), N2–C3 1.316(3), N3–C22 1.338(3), N4–C24 1.328(3), C1–C2 1.398(4), C2–C3 1.417(4), C22–C23 1.414(4), C23–C24 1.420(3), N1–Yb–N2 79.93(7), N3–Yb–N4 82.37(7), N2–Yb–C19 70.48(9).

Peter B. Hitchcock, Michael F. Lappert* and Andrey V. Protchenko The Chemistry Department, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk; Fax: +44 1273 677196; Tel: +44 1273 678316

Notes and references

 \ddagger Crystal data: for 1·LH·0.5PhMe (yellow prism 0.25 × 0.20 × 0.10 mm³): $[C_{58}H_{81}N_4Tm] \cdot (C_{29}H_{42}N_2) \cdot 0.5(C_7H_8), M = 1467.91$, triclinic, space group P1, a = 10.9404(2), b = 16.9293(2), c = 24.5836(3) Å, $\alpha = 70.187(1),$ $\beta = 83.689(1), \gamma = 75.243(1)^\circ, V = 4140.99(10) Å^3, Z = 2, T = 173(2) K,$ $\mu = 1.12 \text{ mm}^{-1}, 14519 \text{ independent reflections } [R_{\text{int}} = 0.058], \text{ final}$ R1 = 0.034 [for 12932 reflections with $I > 2\sigma(I)$], wR2 = 0.082 (all data). For **2b** (yellow prism $0.20 \times 0.15 \times 0.10 \text{ mm}^3$): [C₈₂H₈₂BF₂₀N₄Tm], M = 1683.26, monoclinic, space group $P2_1/c$, a = 27.9702(3), b = 19.9944(3), c = 27.9170(4) Å, $\beta = 98.971(1)$, V = 15421.5(4) Å³, Z = 8, T = 173(2) K, $\mu = 1.25$ mm⁻¹, 26992 independent reflections $[R_{int} = 0.075]$, final $R_1 = 0.070$ [for 20129 reflections with $I > 2\sigma(I)$], wR2 = 0.155 (all data). For 3 (yellow plate $0.20 \times 0.20 \times 0.05 \text{ mm}^3$): $[C_{42}H_{58}N_4Si_4Pb]$, M = 938.47, triclinic, space group $P\overline{1}$, a = 11.3492(2), b = 12.1384 (2), c = 16.5846(3) Å, $\alpha = 89.975(1)$, $\beta = 97.414(1)$, $\gamma = 93.140(1)^{\circ}$, V = 2262.16(7) Å³, Z = 2, T = 173(2) K, $\mu = 3.87$ mm⁻ 8131 independent reflections [$R_{int} = 0.055$], final $R_1 = 0.031$ [for 7692 reflections with $I > 2\sigma(I)$], $wR^2 = 0.079$ (all data). For 4 (orange hexagonal prism $0.40 \times 0.35 \times 0.30 \text{ mm}^3$): [C₄₂H₅₇N₄Si₄Yb], M = 903.32, triclinic, space group $P\bar{1}$, a = 11.2608(1), b = 12.8457(2), c = 16.0891(3) Å, space group 11, $\alpha = 86.087(1)$, $\beta = 86.087(1)$, $\gamma = 79.121(1)^\circ$, V = 2280.13(6) Å², Z = 2, T = 173(2) K, $\mu = 2.19$ mm⁻¹, 7714 independent reflections [$R_{int} = 0.036$], final R1 = 0.022 [for 7714 reflections with $I > 2\sigma(I)$], wR2 = 0.053 (all data). For **4a** (brown prism $0.30 \times 0.30 \times 0.30 \text{ mm}^3$): [C₄₂H₅₇N₄Si₄Yb], M = 903.32, triclinic, space group $P\overline{1}$, a = 11.2433(2), b = 12.9389(2), c = 16.2117(3) Å, $\alpha = 89.319(1)$, $\beta = 86.149(1)$, $\gamma = 79.253(1)^{\circ}$, V = 2311.81(6) Å³, Z = 2, T = 173(2) K, $\mu = 2.16$ mm⁻¹, 10926 independent reflections [$R_{int} = 0.037$], final $R_1 = 0.041$ [for 10399 reflections with $I > 2\sigma(I)$, wR2 = 0.094 (all data). The structure is disordered, with 74% as shown and 26% as [YbL'2]. The lower occupancy atom sites for the alternative N3Si3Me3 moiety were included as isotropic

atoms with H atoms omitted. Data collection Kappa CCD. Refinement using SHELXL-97. CCDC numbers 254749–254753 for complexes 1, 2b, 3, 4 and 4a, respectively. See http://www.rsc.org/suppdata/cc/b4/b416549g/ for crystallographic data in .cif or other electronic format.

- L. Bourget-Merle, M. F. Lappert and J. R. Severn, *Chem. Rev.*, 2002, 102, 3031; W. E. Piers and D. J. H. Emslie, *Coord. Chem. Rev.*, 2002, 233, 131.
- (a) A. G. Avent, A. V. Khvostov, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 2002, 1410; (b) O. Eisenstein, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert, L. Maron, L. Perrin and A. V. Protchenko, *J. Am. Chem. Soc.*, 2003, **125**, 10790; (c) A. G. Avent, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert and A. V. Protchenko, *Dalton Trans.*, 2004, 2272.
- 3 (a) Y. Ding, H. Hao, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, Organometallics, 2001, 20, 4806; (b) A. M. Neculai, H. W. Roesky, D. Neculai and J. Magull, Organometallics, 2001, 20, 5501; (c) S. Harder, Angew. Chem., Int. Ed., 2003, 42, 3430; (d) P. G. Hayes, W. E. Piers, L. W. M. Lee, L. K. Knight, M. Parvez, M. R. J. Elsegood and W. Clegg, Organometallics, 2001, 20, 2533; (e) F. Bazuli, J. C. Huffman and D. J. Mindiola, Inorg. Chem., 2003, 42, 8003.
- 4 M. C. Whisler, S. MacNeil, V. Snieckus and P. Beak, *Angew. Chem., Int. Ed.*, 2004, **43**, 2206.
- 5 Y. Yao, Y. Zhang, Q. Shen and K. Yu, Organometallics, 2002, 21, 819.
- 6 P. B. Hitchcock, M. F. Lappert and S. Tian, *Dalton Trans.*, 1997, 1945. 7 S. H. Eggers, W. Hinrichs, J. Kopf, W. Jahn and R. D. Fischer,
- J. Organomet. Chem., 1986, 311, 313.
- 8 O. Just and W. S. Rees, Jr., Inorg. Chem., 2001, 40, 1751.
- 9 D. Drees and J. Magull, Z. Anorg. Allg. Chem., 1994, 620, 814.
- 10 W. J. Evans, K. J. Forrestal, J. T. Leman and J. W. Ziller, *Organometallics*, 1996, **15**, 527; W. J. Evans, G. W. Nyce, M. A. Johnston and J. W. Ziller, *J. Am. Chem. Soc.*, 2000, **122**, 12019.
- 11 M. Karl, K. Harms, G. Seybert, W. Massa, S. Fau, G. Frenking and K. Dehnicke, Z. Anorg. Allg. Chem., 1999, 625, 2055.
- 12 A. G. Avent, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert and A. V. Protchenko, *Dalton Trans.*, 2003, 1070.