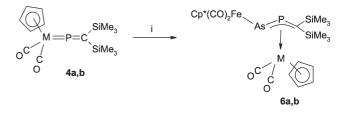

Syntheses and molecular structures of η^3 -[(η^5 -Cp*)(CO)₂Fe– AsPC(SiMe₃)₂]M(CO)₂(η^5 -Cp) (M = Mo, W): the first complexes featuring η^3 -arsaphosphaallyl ligands[†]

Lothar Weber,* Philipp Bayer, Hans-Georg Stammler and Beate Neumann


Received (in Cambridge, UK) 23rd September 2004, Accepted 21st December 2004 First published as an Advance Article on the web 27th January 2005 DOI: 10.1039/b414621b

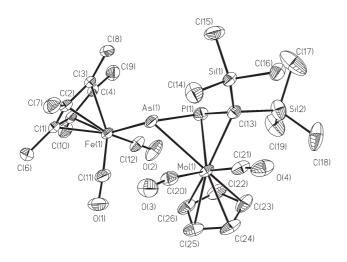
Reaction of $(\eta^5-Cp)(CO)_2M=P=C(SiMe_3)_2$ 4a (M = Mo) and 4b (M = W) with $(\eta^5-Cp^*)(CO)_2Fe-As=C(NMe_2)_2$ 5 affords the η^3 -1-arsa-2-phosphaallyl complexes [$(\eta^5-Cp^*)(CO)_2Fe-AsPC(SiMe_3)_2$]M(CO)₂(η^5 -Cp) 6a and 6b, the molecular structures of which were determined by X-ray analyses.

The search for novel ligand systems remains an important target for both academic and industrial reasons. Prominent examples are N-heterocyclic carbenes which, as ancillary ligands in transition metal complexes, have significantly improved the efficiency of a number of catalysed processes.1 Other remarkable examples concern phosphaalkenes, phospholyls and phosphinines which recently have emerged from laboratory curiosities to valuable ligands in complex catalysis.² Compared to a plethora of synthetically useful η^3 -allyl complexes only a few coordination compounds with η^3 -1-phosphaallyl ligands such as 1^3 or η^3 -1,3diphosphaallyl ligands such as 2^{4a} and 3^{4b} are described. The latter complex exhibits catalytic activity in ethylene polymerisation. Complexes of the isomeric η^3 -1,2-diphosphaallyl ligand or arsenic analogues thereof have not been reported in the literature as yet. This communication reports a convenient access to the first η^3 -1arsa-2-phosphaallyl complexes.

Reaction of $(\eta^5-\text{Cp}*)(\text{CO})_2\text{FeAs}=\text{C}(\text{NMe}_2)_2$ (5)⁵ with the phosphavinylidene complexes $(\eta^5-\text{Cp})(\text{CO})_2\text{M}=\text{P}=\text{C}(\text{SiMe}_3)_2$ 4a (M = Mo) and 4b (M = W)⁶ in toluene in the temperature range -30 °C to room temperature (Scheme 1) led to the dark red crystalline η^3 -1-arsa-2-phosphaallyl complexes 6a (M = Mo, 35% yield) and 6b (M = W, 52% yield). The products were isolated by column chromatography on Florisil with a mixture of hexane-diethyl ether 2 : 1 (v/v) (6a) or pentane-diethylether 5 : 1 (v/v) (6b) as eluents.

Scheme 1 Reagents and conditions: i, 4, Cp*(CO)₂FeAs=C(NMe₂)₂ (5) (Cp* = C₅Me₅) (1 mol equiv.), toluene, $-30 \degree$ C to $20 \degree$ C, 48 h (a: M = Mo; b: M = W).

The composition and constitution of the complexes **6a** and **6b** are proven by satisfactory elemental analyses, spectroscopic data‡ and X-ray structural analyses.§


A singlet at $\delta = 4.1$ in the ³¹P NMR spectrum of **6a**, a doublet in the ¹³C{¹H} NMR spectrum at δ 49.9 (¹ $J_{PC} = 105$ Hz), and singlets in the ¹H NMR spectrum for two different trimethylsilyl groups ($\delta = 0.26, 0.61$), the pentamethylcyclopentadienyl ($\delta = 1.46$) and the cyclopentadienyl ligands ($\delta = 5.10$) as well as the absence of resonances due to the C(NMe₂)₂-fragment indicate the combination of the phosphavinylidene unit of 4a and the arsanediyl group of 5 to a novel ligand system in complex 6a. Accordingly, the tungsten analogue 6b displays a singlet at $\delta = -18.7$ in the ³¹P NMR spectrum. This high-field position is typical for the ${}^{31}P$ NMR resonances of η^3 -phosphaallyl complexes of tungsten as evident from η^3 -{2,4,6 $tBu_3C_6H_2 \sim PCHCH_2 W(CO)_2Cp$ ($\delta = -48.9$ and -28 for both isomers).⁷ In the ${}^{13}C \{{}^{1}H\}$ spectrum of **6b** the carbon atom of the 1-arsa-2-phosphaallyl ligand appears as a doublet at $\delta = 35.7 (^{1}J_{PC} = 101.2 \text{ Hz}).$

The asymmetry of complexes **6a** and **6b** is mirrored by discrete resonances in the low field region of the ¹³CO groups [**6a**: δ Mo(CO) = 234.3 s, 236.8 s; δ Fe(CO) = 216.7 s, 218.65 (d, ${}^{3}J_{PC}$ = 11.5 Hz); **6b**: δ W(CO) = 222.7 s, 224.6 s; δ Fe(CO) = 217.1 s, 219.0 s]. Inspection of the (CO)-stretching bands in the IR spectrum of **6a** (Fe(CO) = 1977, 1929 cm⁻¹, Mo(CO) = 1929, 1850 cm⁻¹), and **6b** (Fe(CO) = 1975, 1923 cm⁻¹, W(CO) = 1923, 1843 cm⁻¹) indicates the improved donor capacity of the 1-arsa-2-phosphaallyl ligand when compared with the η^{3} -1-phosphaallyl complex {2,4,6-*t*Bu₃C₆H₂PCHCH₂}W(CO)₂Cp ((CO) = 1935, 1850 cm⁻¹).⁷

The X-ray analyses of **6a** (Fig. 1) and **6b** (Fig. 2) reveal the molecules as complexes where an η^3 -ligand is unsymmetrically coordinated to the metal atom of an M(CO)₂(Cp) moiety *via* the arsenic atom [**6a**: d(Mo–As) = 2.7644(3) Å; **6b**:

[†] Electronic supplementary information (ESI) available: details of the refinement and crystal structure of **6a**. See http://www.rsc.org/suppdata/cc/b4/b414621b/

^{*}lothar.weber@uni-bielefeld.de

Fig. 1 ORTEP view of the structure of **6a** in the crystal. Important bond lengths (Å) and angles (°) are: Mo(1)–As(1) 2.7644(3), Mo(1)–P(1) 2.4940(6), Mo(1)–C(13) 2.420(2), Fe(1)–As(1) 2.4098(4), As(1)–P(1) 2.2507(7), P(1)–C(13) 1.791(2); Fe(1)–As(1)–P(1) 106.59(2), As(1)–P(1)–C(13) 99.15(7), P(1)–C(13)–Si(1) 120.88(12), P(1)–C(13)–Si(2) 108.67(11).

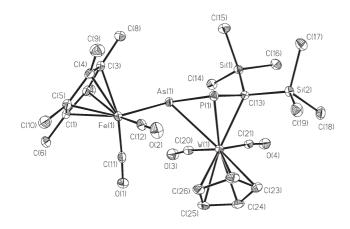


Fig. 2 ORTEP view of the structure of **6b** in the crystal. Important bond lengths (Å) and angles (°) are: W(1)–As(1) 2.7854(2), W(1)–P(1) 2.4955(5), W(1)–C(13) 2.411(2), Fe(1)–As(1) 2.4157(3), As(1)–P(1) 2.2543(5), P(1)–C(13) 1.797(2); Fe(1)–As(1)–P(1) 108.14(2), As(1)–P(1)–C(13) 97.87(6), P(1)–C(13)–Si(1) 121.51(10), P(1)–C(13)–Si(2) 107.92(10).

d(W-As) = 2.7854(2) Å], the central phosphorus atom [**6a**: d(Mo-P) = 2.4940(6) Å; **6b**: d(W-P) = 2.4955(5) Å] and the carbon atom of the former phosphavinylidene ligand of precursors **4a** and **4b** [**6a**: d(Mo-C) = 2.420(2) Å; **6b**: d(W-C) = 2.411(2) Å].

The W–As π -bonds in $[\eta^1:\eta^2$ -PhAs=AsPh][(W(CO)₅]₂ [2.728(4) and 2.769(4) Å] are comparable to the W–As bond length in **6b**.⁸ The Mo–P π -bond distance in { η^3 -PhP[W(CO)₅]CH=CH₂}-Mo(CO)₂Cp [2.533(8) Å]^{3c} as well as the W–P π -bond length in η^3 -{2,4,6-*t*Bu₃C₆H₂–P(O)CHCH₂}W(CO)₂Cp [2.488(1) Å] is also in good agreement with the respective atom distances in **6a** and **6b**.⁹ The Mo–C(13) bond in **6a**, and the W–C(13) bond in **6b**, however, are markedly lengthened in comparison to those in [η^3 -PhP{W(CO)₅}CHCH₂]Mo(CO)₂Cp [2.251(3), 2.357(3) Å]^{3c} and η^3 -{2,4,6-*t*Bu₃C₆H₂P(O)CHCH₂}W(CO)₂Cp [2.344(5), 2.335(4)].⁹

Due to the π -interaction with a metal atom the As–P distances within the 1-arsa-2-phosphaallyl ligand in **6a** [2.2507(7) Å] and **6b** [2.2543(5) Å] are longer than the unsupported As=P double bonds in the structurally characterised compounds [(Me₃Si)₂CH]As=P(2,4,6-*t*Bu₃C₆H₂) [2.124 Å]¹⁰ or (η^{5} -C₅Me₅)(CO)₂As[Cr(CO)₅]=P(2,4,6-*t*Bu₃C₆H₂) [2.155(1) Å].¹¹

The same is true with the ligated PC bonds in **6a** [1.791(2) Å] and **6b** [1.797(2) Å] which are even longer than those in $[\eta^3$ -PhP{W(CO)₅}CH=CH₂]Mo(CO)₂Cp [1.755(3) Å]^{3c} or in $[\eta^3$ -2,4,6-*t*Bu₃C₆H₂P(O)CHCH₂]W(CO)₂Cp [1.762(4) Å].⁹

The atoms Fe(1) and Si(2) in both complexes are directed towards the phosphorus atom enclosing angles Fe(1)–As(1)–P(1) [**6a**: 106.59(2)°; **6b**: 108.14(2)°], As(1)–P(1)–C(13) [**6a**: 99.15 (7); **6b**: 97.87(6)°] and P(1)–C(13)–Si(2) [**6a**: 108.67(11)°, **6b**: 107.92(10)°]. Substituent Si(1)(CH₃)₃ at C(13) is located above the plane defined by the atoms As(1),P(1) and C(13) with P(1)–C(13)–Si(1) angles of 120.88(12)° (**6a**) and 121.51(10)° (**6b**).

From the view-point of the Wade–Mingos rules molecules **6a** and **6b** possess four skeleton atoms and 14 skeleton electrons and thus have to be regarded as arachno-clusters.¹² Despite the presence of 4 chiral centers only one pair of enantiomers were obtained in each case.

Previously, transition metal-induced cleavages of inversely polarized arsaalkenes to cyclotriarsanes¹³ or an η^2 -diarsene ligand¹⁴ were observed. Obviously, such arsaalkenes serve as convenient sources for the generation of highly reactive arsanediyls under mild conditions.

Investigations on the chemical properties of **6a** and **6b** are under way.

Lothar Weber,* Philipp Bayer, Hans-Georg Stammler and Beate Neumann

Fakultät für Chemie der Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany. E-mail: lothar.weber@uni-bielefeld.de

Notes and references

[‡] Selected spectroscopic data: for **6a**: ³¹P{¹H} NMR (C₆D₆): δ 4.1 (s); ¹H NMR (C₆D₆): δ 0.26 (s, 9H, SiMe₃), 0.61 (s, 9H, SiMe₃), 1.46 (s, 15H, C₅Me₅), 5.10 (s, 5H, C₅H₅); ¹³C{¹H} NMR (C₆D₆): δ 236.8 (s, MoCO), 234.3 (s, MoCO), 218.65 (d, ³J_{PC} = 11.5 Hz, FeCO), 216.7 (s, FeCO), 95.6 (s, C₅(CH₃)₅), 91.2 (s, C₅H₅), 49.9 (d, ¹J_{PC} = 105 Hz, PCSi₂), 9.4 (s, C₅(CH₃)₅), 4.35 (s, SiCH₃), 4.27 (s, SiCH₃); IR (KBr): 1850, 1929, 1977 cm⁻¹ [ν(CO)]. Anal. calcd. for C₂₆H₃₈AsFeMoQ₄PSi₂ (**6a**) : C 42.87, H 5.26; found C 43.17, H 5.29% for **6b**: ³¹P{¹H} NMR (C₆D₆): δ -18.7 (s); ¹H NMR (C₆D₆): δ 0.25 (s, 9H, SiMe₃), 0.66 (s, 9H, SiMe₃), 1.47 (s, 15H, C₅Me₅), 5.13 (s, 5H, C₅H₅); ¹³C{¹H} NMR (C₆D₆): δ 224.6 (s, WCO), 222.7 (s, WCO), 219.0 (s, FeCO), 217.1 (s, FeCO), 95.6 (s, C₅(CH₃)₅), 89.6 (s, C₃H₅), 35.7 (d, ¹J_{PC} = 101.2 Hz, PCSi₂), 10.1 (s, SiCH₃), 9.5 (s, C₅(CH₃)₅), 4.4 (d, ³J_{PC} = 9.2 Hz, SiCH₃); IR (KBr): 1843, 1923, 1975 cm⁻¹ [ν(CO)]. Anal. calcd. for C₂₆H₃₈AsFeO₄PSi₂W (**6b**) : C 38.26, H 4.49; found C 38.68, H 4.90%.

§ *Crystal data*: C₂₆H₃₈AsFeMoO₄PSi₂ **6a**, *M* = 728.4, monoclinic space group *P*2₁/*n*, *a* = 12.9620(1), *b* = 18.3280(2), *c* = 13.7430(2) Å, *β* = 104.246(1)°, *V* = 3164.49(6) Å³, *Z* = 4, λ(Mo-Kα) = 0.71073 Å, μ(Mo-Kα) = 2.047 mm⁻¹, *D_c* = 1.529 g cm⁻³. The structure was solved by direct methods and refined by full-matrix least-squares refinement to a current *R_F* = 0.032 based on 7859 reflections with *I_o* ≥ 2*σ*(*I*). C₂₆H₃₈AsFeO₄PSi₂W (**6b**) + C₇H₁₄: *M* = 914.5, triclinic space group *P*I, *a* = 9.5380(1), *b* = 14.0420(1), *c* = 14.3110(2) Å, *α* = 100.3140(7), *β* = 100.0740(7), *γ* = 92.4090(8)°, *V* = 1851.33(3) Å³, *Z* = 2, λ(Mo-Kα) = 0.71073 Å, μ(Mo-Kα) = 4.525 mm⁻¹, *D_c* = 1.641 g cm⁻³. The structure was solved by direct methods and refined by full-matrix leastsquares refinement to a current *R_F* = 0.018 based on 8006 reflections with *I_o* ≥ 2*σ*(*I*). CCDC 250373 (**6a**) and CCDC 255257 (**6b**). See http://www.rsc.org/suppdata/cc/b4/b414621b/ for crystallographic data in .cif or other electronic format.

- 1 Review: W. A. Herrmann, Angew. Chem., 2002, 114, 1342, Angew. Chem., Int. Ed., 2002, 41, 1363.
- 2 Review: L. Weber, Angew. Chem., 2002, 114, 583, Angew. Chem., Int. Ed., 2002, 41, 563.
- 3 (a) F. Mercier, J. Fischer and F. Mathey, Angew. Chem., 1986, 98, 347, Angew. Chem., Int. Ed. Engl., 1986, 25, 357; (b) F. Mercier, C. Hugel-Le Goff and F. Mathey, Organometallics, 1988, 7, 955; (c) C. Hugel-LeGoff, F. Mercier, L. Ricard and F. Mathey, J. Organomet. Chem., 1989, 363, 325.
- 4 (a) R. Appel, W. Schuhn and F. Knoch, Angew. Chem., 1985, 97, 421, Angew. Chem., Int. Ed. Engl., 1985, 24, 420; (b) W. Keim, R. Appel, S. Gruppe and F. Knoch, Angew. Chem., 1987, 99, 1042, Angew. Chem., Int. Ed. Engl., 1987, 26, 1012.
- 5 L. Weber, O. Kaminski, H.-G. Stammler and B. Neumann, *Chem. Ber.*, 1996, **129**, 223.

- 6 (a) A. M. Arif, A. H. Cowley, C. M. Nunn, S. Quashie, N. C. Norman and A. G. Orpen, *Organometallics*, 1989, **8**, 1878; (b) E. Niecke, H.-J. Metternich, M. Nieger, D. Gudat, P. Wenderoth, W. Malisch, C. Hahner and W. Reich, *Chem. Ber.*, 1993, **126**, 1299.
- 7 F. Mercier and F. Mathey, Organometallics, 1990, 9, 863.
- 8 H. Lang, G. Huttner, B. Sigwarth, U. Weber, L. Zsolnai, I. Jibril and O. Orama, Z. Naturforsch. B: Anorg. Chem. Org. Chem., 1986, B41, 191.
- 9 F. Mercier, L. Ricard and F. Mathey, Polyhedron, 1990, 9, 2859.
- 10 A. H. Cowley, J. G. Lasch, N. C. Norman, M. Pakulski and B. R. Whittlesey, J. Chem. Soc., Chem. Commun., 1983, 881.
- 11 L. Weber, D. Bungardt and R. Boese, Chem. Ber., 1988, 121, 1535.
- 12 (a) K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1; (b) D. M. P. Mingos, Acc. Chem. Res., 1984, 17, 311.
- 13 L. Weber, G. Dembeck, P. Lönnecke, H.-G. Stammler and B. Neumann, Organometallics, 2001, 20, 2288.
- 14 L. Weber, M. H. Scheffer, H.-G. Stammler and B. Neumann, *Inorg. Chim. Acta*, 1999, 291, 311.