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Chemical systems, far from thermodynamic equilibrium, may

spontaneously self-construct complex structures mimicking

biological structures.

Rotating spirals, fractals, spots and the formation of fingers

represent forms that are routinely observed in chemical, physical,

geological, cosmological and biological systems.1 The formation of

fingers is probably the most common of shared forms, which have

been observed in viscous fingering,2 in geological systems,3

propagation of chemical reaction diffusion fronts,4 chemical

reaction diffusion fronts and convection,5 combustion,6 frontal

polymerization,7 biological morphogenesis of unicellular algae,8

chemical precipitation,9 crystallization,10 electrodeposition11 and

dissolution.12 D’Arcy Thompson in his landmark book, ‘‘On

Growth and Form,’’1 describes many forms common to both the

physical and biological worlds. Intriguingly, the mechanisms

leading to similar forms are rather different. For example,

Nijhout13 in a chapter, ‘‘Patterns and Processes,’’ recently

described various mechanisms that result in highly analogous

structures. Moreover, it was demonstrated that varied physical and

chemical processes could produce highly complex crystallization

structures in simple inorganic chemical systems.15–18 In the present

paper, we report the formation of highly complex crystal structures

from simple inorganic systems that superficially mimic biological

forms. For example, either arboriform (tree like structures) or

spongiform crystals will grow out of the solution, depending on the

ratio of two ions: Fe(CN)6
32 and Fe2+. Very little is known about

such structures.14

The two basic morphological forms encountered in this study

(Fig. 1 and Fig. 2) are produced by mixing solutions of K3Fe(CN)6

and FeSO4 in specific proportions; mixtures are left to evaporate in

Petri dishes. Arboriform crystals (Fig. 1) are produced when the

ratio of K3Fe(CN)6 to FeSO4 is 4.3:1 to 7.1:1. SEM images of

these crystals reveal that individual tree-like branches are internally

hollow, much like a capillary tube (Fig. 3). Upward movement of

the solution may be driven by capillary action or osmotic pressure.

We have not seen any inorganic membranes however we observe

abundance of networks of capillary tubs. Therefore we assume

that transport is driven exclusively by capillary action.

Together, various interconnecting branches form a continuous

internal network or conduit of interconnecting tubules that diverge

at different angles. A majority of branches are hexagonal in cross-

section, although some also appear pentagonal or rectangular in

cross-section.

The fractal dimension was determined using the method

described by Du and Stone.14 The crystals were grown in a Petri

dish using solutions of K3Fe(CN)6 in concentrations of .10M,

.20M, .30M, .40M, and .50M. The concentrations of the FeSO4

solution were .07M, .14M, .21M, .28M and .35M (total of 25

solutions). The Petri dishes each were filled with 30 mL of solution

and the collection of dishes was then placed in a glass housing to

control and slow the rate of evaporation. The fractal dimensions

were determined by breaking off branches under magnification,

and measuring their length using callipers. Their weight was

determined using a scale capable of accuracy to .0001 g. The slope

of the line resulting from log-log plots of branch length vs. branch
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Fig. 1 Chemical trees 1(a). (1.4:1 ratio, Fe3+ 0.5M, Fe2+ 0.35M, 2.38

fractal dimension). A global view of an inorganic analogue of a mangrove

forest that grows in a Petri dish. On the bottom we observe a network of

‘‘roots’’. Attached to the side of the Petri dish, tubular trunks are observed.

Above the edge of the dish the ‘‘forest canopy’’ can be seen. 1(b). (3.6:1

ratio, Fe3+ 0.5M, Fe2+ 0.14M, 1.59 fractal dimension). In this case the trees

are developing more defined branches. 1(c). (7.1:1 ratio, Fe3+ 0.5M, Fe2+,

0.07M, 1.08 fractal dimension). In this case, the ‘‘trees’’ are sparsely spaced

and have only a few thin branches.
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weight gives the fractal dimension of the structure (Fig. 4A). The

dimension of a perfect crystal is 3.0 and for a tube without

branches is equal to 1.0. In effect, the shape of the arboriform

crystal varies with the ratio of K3Fe(CN)6 to FeSO4 : trees become

less dense. The fractal dimension is a function of the K3Fe(CN)6 :

FeSO4 ratio (Fig. 4B) and decreases asymptotically to 1.0 as the

ratio increases.

Spongiform crystal structures (Fig. 2) that appear exceedingly

more porous and bulkier than the arboriform structures are

typically produced when the K3Fe(CN)6 to FeSO4 ratio ranges

from 1.4:1 to 4.3:1. These crystals would sometimes grow together

in clusters, always lacked branches, and instead were composed of

numerous semi spheres.

Every semi sphere is constructed from numerous smaller semi

spheres (Fig. 2A, B), which is consistent for fractal structures. The

spongiform crystal is highly porous, which facilitates internal

transport of K3Fe(CN)6–FeSO4 mixtures. SEM imagery of

fractured spongiform crystals (Fig. 2C) suggests that the growth

mechanism is different compared to that of arboriform crystals.

For example, the numerous internal capillary tubules exhibit a

four-sided rhomboidal symmetry, and are surrounded by a dense

crystal matrix. The honeycomb appearance of the capillary tubules

suggests that capillary action is largely responsible for material

transport to the surface. Moreover, there are no transitional forms

intermediate between spongiform and arboriform crystals; in some

cases both forms are represented in a single solution.

We hypothesize that arboriform crystal formation occurs in

several steps. An intricate network of porous tubular ‘‘roots’’

develops on the bottom and then grows up the sides of a Petri dish

as fluid levels evaporate (Fig. 1). They appear similar in form to

Fig. 2 Chemical sponges. (1.8:1 ratio, Fe3+ 0.5M, Fe2+ 0.28, 2.14 fractal

dimension). The fractal structure is visible in 2(a) where succeeding semi-

spheres are visible. 2(b). Electron microscope imagery of the smallest semi-

sphere. 2(c). Upon fracture of the sponge, one observes a cross sectional

view which displays the channels used in transporting the building material.

Fig. 3 Detailed structure of tree branches. (7.1:1 ratio, Fe3+ 0.5M, Fe2+

0.07M, 1.08 fractal dimension). 3(a). Magnification of the bifurcation of

2(b). 3(b). Magnification of the tree branches in 3(a), showing in detail the

branched structure and hollow interior of tubes used in transporting the

material for growth.
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the prop or stilt roots of red mangrove trees.19 These roots

converge and fuse to form the basal trunks of crystal trees, forming

a complex conduit through which fluids are transported to the

growing branches.

Tree growth ceases if the ‘‘prop root’’ system is severed.

Branching commences once the trunk grows above the edge of the

dish. We hypothesize that branches grow as solution is transported

through internal capillaries to the surface where it both vaporizes

and crystallizes around distal tubule openings. For example,

solution was actually observed on the surface of spongiform

crystals. We find the form displayed by ‘‘root’’ systems of these

inorganic tree-like crystals and the prop or stilt roots of red

mangrove trees interesting. The root systems of arboriform crystals

and mangroves grow in opposite directions. The roots of both

systems function to transport fluids to the growing branches and,

in the case of mangroves, leaves. Unlike mangroves, it appears that

capillaries of arboriform crystals do not transport fluids against

diffusion gradients to the roots.

The mechanism of crystalline sponge formation is probably

different, and surmises the existence of complex interconnecting

networks of capillary tubes analogous to those described in

leuconoid poriferan sponges.20 The presence of such complex

networks may be partly dependent on the ratio of solutions used

and to their ionic interactions. In leuconoid sponge’s incurrent

channels that transport water, oxygen and food particles

repeatedly branch into smaller tubules that eventually open into

chambers lined with flagellated collar cells where fluids containing

food and gases are processed. Although the analogy between

leuconoid and crystalline sponges is tenuous, fluid transport and

crystal growth in inorganic sponges must reflect a quantitative

relationship involving the vaporization, osmotic migration of salts

through a highly porous network of minute channels and

precipitation. The mechanism describing this association is under

investigation.
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Fig. 4 , Mass of a branch of a salt tree as a function of length for ratios

of Fe3+/Fe2+ are plotted in A. (Squares are 1.8:1 with fractal dimension of

2.14, triangles are 3.6:1 with fractal dimension of 1.59, diamonds are 5.0:1

with fractal dimension of 1.35.) The slopes represent the fractal dimensions

of the crystals and are plotted as a function of ratio in B.
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