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Strong fluorescence signals were observed after the reaction of

novel reagents with hydroperoxides.

Lipid peroxidation is closely related to aging,1 and a number of

diseases2 including cancer, Alzheimer’s disease, and atherogenesis.

Thus, the development of a method to detect hydroperoxides is an

important task in the area of biological and biomedical sciences.3

The use of a fluorescent reagent4 has been one of the most

practical methods for the detection of hydroperoxides in biological

samples because it offers high sensitivity and selectivity. Especially,

the significant fluorescence enhancement assists the detection of

low concentrations of hydroperoxides. Up until now, two

fluorescent derivatisation reagents for hydroperoxides, diphenyl-

1-pyrenylphosphine (DPPP)5 and 4-(2-diphenylphosphinoethyl-

amino)-7-nitro-2,1,3-benzoxadiazole (NBD-DPP),6 have been

developed. In both cases, a 30-fold fluorescence enhancement

was seen after reaction with hydroperoxides. Interestingly, their

fluorescence switching mechanisms are different. The former

fluorescence is controlled by the electron withdrawing/donating

features of substituents. The ICT (intramolecular charge transfer)

character of the fluorophore changes on reaction with hydroper-

oxides. On the other hand, the latter fluorescence is controlled by

the PET (photoinduced electron transfer) process. Comparing the

two types of fluorescent derivatisation reagents, the design of the

latter is much easier because the efficiency of the PET process has

been predictable.7 Nevertheless, the former type of fluorescent

reagent can afford higher sensitivity since it has a very low intrinsic

fluorescence, as seen in dansyl chloride.8 Now we are able to

design sensitive fluorescent derivatisation reagents even with

control of the ICT character by a recently established method.9

In this paper, we describe the design, synthesis, and properties of

novel fluorescent derivatisation reagents for hydroperoxides, which

give an over fourteen times larger fluorescence enhancement than

conventional reagents as the maximum.

The benzofurazan (2,1,3-benzoxadiazole) skeleton was chosen

as the fluorophore,10,11 since it possesses long excitation and

emission wavelengths, which avoid interference due to biomatrices.

Furthermore, the fluorescence intensities of the 4,7-disubstituted

benzofurazans are predictable using the Hammett substituent

constants at the 4- and 7-positions, as has been shown in

developing some fluorescent reagents for other targets.12 Next, the

phosphino group was chosen as a reactive moiety at the 4-position

of the benzofurazan skeleton because its electron withdrawing/

donating character can be varied by reaction with hydroperoxides,

which dramatically helps the fluorescence switching. Finally, by

choosing a substituent at the 7-position based on the method

previously reported9 (see ESI for details{), we designed compounds

1–3 as fluorescent derivatisation reagents for hydroperoxides,

which react with hydroperoxides to form the oxidised derivatives

19–39 (Scheme 1).

As shown in Scheme 2, we adopted an addition–elimination

reaction for the introduction of the phosphine unit to the

benzofurazans.13 Bromobenzofurazan derivative c, which was

readily prepared from nitro derivative a, was treated with lithium

diphenylphosphide to afford the desired compound 1 in modest

yield. In the case of the reaction with compound f, however, the

sulfide group behaved as a leaving group and the doubly

substituted compound g was obtained as the main product.

Thus, we then utilised a palladium-mediated coupling reaction of

bromobenzofurazan with (trimethylsilyl)diphenylphosphine.14

Although the initial trial using bis(acetonitrile)palladium

dichloride as a catalyst resulted in recovery of the starting

compounds, the reaction in the presence of palladium acetate and

{ Electronic supplementary information (ESI) available: the method for
designing the reagents and their synthetic details. See http://www.rsc.org/
suppdata/cc/b5/b500419e/
*m-onoda@pharm.teikyo-u.ac.jp

Scheme 1 The structures of the novel fluorescent derivatisation reagents

for hydroperoxides and their hydroperoxide derivatives.

Scheme 2 Synthesis of 1–3 and 19–39. Reagents and conditions: (i) Fe,

HCl, MeOH, CH2Cl2, rt, 25 min (72%); (ii) Ac2O, pyridine, 50 uC, 4 h

(68%); (iii) Ph2PLi, THF, 210 uC, 10 min (21% for 1); (iv) tert-butyl

hydroperoxide, CHCl3, rt, 20 min (83% for 19, 82% for 29, 86% for 39); (v)

Br2, Fe, CH2Cl2, 100 uC, 1 h (72%); (vi) NaSMe, aqueous NaHCO3,

MeCN, rt, 1.5 h (89%); (vii) Ph2PSiMe3, Pd(OAc)2, P(o-tol)3, DMF, 90 uC,
4 h (32%); (viii) Et2PSiMe3, Pd(OAc)2, P(o-tol)3, DMF, 90 uC, 4 h (35%).
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tris(2-methylphenyl)phosphine took place chemoselectively to

afford the desired 2 in 32% yield. In the same way, the

corresponding diethylphosphine 3 was obtained from f in 35%

yield. This is the first report of the direct introduction of a

phosphine unit to the benzofurazan skeleton. The oxidised

derivatives 19–39 were prepared by oxidation with tert-butyl

hydroperoxide (Scheme 2).

Next, the fluorescence characteristics of the reagents 1–3 and

their derivatives 19–39 were investigated in polar environments so

as to mimic bio-relevant systems. The data are summarised in

Table 1. As expected, fluorescence enhancement (FE) was

observed when comparing reagents 1–3 and the oxidised

derivatives 19–39. High FE values were obtained from 1–3

(max . 420) (cf. those in DPPP and NBD-DPP: y30)

showing the success of our strategy. The Stokes shifts of 19–

39(¢5700 cm21) were larger than those of the derivatives of

conventional reagents (¡2700 cm21). Furthermore, 19–39 showed

longer emission wavelengths (471–521 nm) than the derivative of

DPPP (y387 nm). These results indicated that reagents 1–3 have

advantages in terms of avoiding interference from real samples. In

water, the oxidised derivative 19 had the highestW value (W5 0.11)

among the three oxidised derivatives, suggesting that reagent 1

could be the most effective for the detection of hydroperoxides

under water-rich conditions.

Having successfully obtained the desired properties, we then

examined the utility of 1 as a representative of the reagents. As

shown in Fig. 1, a stronger fluorescence signal was produced by

higher concentrations of hydroperoxide (a and b), and a linear

relationship was obtained between the fluorescence intensity and

the concentration of the hydroperoxide (c). The detection limit

(S/N 5 3) of hydroperoxide was 1 mM in this system, which

overruns the limits of conventional reagents (DPPP: 12 mM,NBD-

DPP: 9 mM) under comparable conditions. By using the donor–

acceptor choices from this design method,9 much improved

fluorescent derivatisation reagents 1–3 are available.
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(right) treatment with hydroperoxide. (c) Relationship between the

fluorescence intensity (F.I.) at 492 nm and the concentration of

hydroperoxide.
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