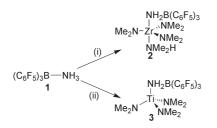
New titanium and zirconium complexes with $M-NH_2$ bonds formed by facile deprotonation of $H_3N \cdot B(C_6F_5)_3$

Andrew J. Mountford,^{*a*} William Clegg,^{*b*} Ross W. Harrington,^{*b*} Simon M. Humphrey^{*c*} and Simon J. Lancaster^{**a*}


Received (in Cambridge, UK) 13th January 2005, Accepted 16th February 2005 First published as an Advance Article on the web 1st March 2005 DOI: 10.1039/b500407a

Facile deprotonation of $H_3N \cdot B(C_6F_5)_3$ with $[M(NMe_2)_4] (M = Zr \text{ or } Ti)$ yields the novel amidoborate complexes $[Zr(NMe_2)_3 - {NH_2B(C_6F_5)_3}(HNMe_2)]$ and $[Ti(NMe_2)_3 \{NH_2B(C_6F_5)_3\}]$.

Tris(pentafluorophenyl)boron continues to attract considerable attention as an activator in polymerisation catalysis¹ and as a catalyst for organic transformations.² Its Lewis acidity has also been utilised in the synthesis of poorly coordinating anions, for example the amidodiborate $[H_2N\{B(C_6F_5)_3\}_2]^{-3}$ Recently there has been increased interest in the structure and reactivity of neutral Brønsted acidic adducts of $B(C_6F_5)_3$.⁴ The best studied example, $H_2O \cdot B(C_6F_5)_3$,⁵ has been shown to protonate M–R bonds, yielding complexes with $[HOB(C_6F_5)_3]^{-}$ and $[OB(C_6F_5)_3]^{2^-}$ ligands.^{6,7} However, to date there are no reports describing similar reactivity with $H_3N \cdot B(C_6F_5)_3$.⁸

Considerable attention has been focused on determining the course of reactions between $[M(NR_2)_4]$ and NH_3 , since they play a key role in the chemical vapour deposition of the technologically important metal nitride materials [MN] (M = Ti, Zr).⁹ While intermediates involving NH₂, NH and N ligands have been postulated,¹⁰ isolable models have been restricted to N-bridged polynuclear complexes stabilised by sterically demanding ancillary ligands.^{11,12} We report here the reactivity of H₃N·B(C₆F₅)₃ towards $[M(NMe_2)_4]$ and the isolation of Lewis acid stabilised examples of terminal amido (NH₂) ligation.

Treatment of a toluene solution of $[Zr(NMe_2)_4]$ with $H_3N \cdot B(C_6F_5)_3^{13}$ (1) resulted in the immediate precipitation of a colourless microcrystalline solid 2 (Scheme 1). Compound 2 proved to be insoluble in aromatic and chlorocarbon solvents but could be recrystallised from tetrahydrofuran solution, without affecting the elemental composition.¹⁴ The ¹H NMR spectrum (THF-d₈) consisted of two singlets at δ 2.88 and 2.70, indicating two NMe₂ environments in a 3 : 1 ratio, while the new ¹¹B NMR

Scheme 1 Synthesis of compounds 2 and 3. (i) RT, toluene, $[Zr(NMe_2)_4]$; (ii) 0 °C, light petroleum, $[Ti(NMe_2)_4]$.

*S.Lancaster@uea.ac.uk

signal at $\delta -2.4$ was consistent with conversion of H₃N·B(C₆F₅)₃ ($\delta -4.9$) into an amidoborate [NH₂B(C₆F₅)₃] ligand. Evidence for the presence of an NH₂ group was provided by the observation of bands at 3364 and 3293 cm⁻¹ in the FT-IR spectrum. On the basis of the elemental analysis and spectroscopic data we formulated complex **2** as [Zr(NMe₂)₃{NH₂B(C₆F₅)₃}(HNMe₂)].

Despite the poor solubility of **2** very small crystals were obtained by layering two toluene solutions of $[Zr(NMe_2)_4]$ and **1**. The solid state structure was determined by diffraction methods using synchrotron radiation and confirmed the proposed composition.† Compound **2** forms a distorted trigonal bipyramid in which the amidoborate and amino ligands are coordinated *trans* to one another $(N(1)-Zr(1)-N(5) = 173.45(13)^\circ)$ (Fig. 1). Of the five Zr–N bond lengths those to the HNMe₂ (2.424(4) Å) and the three equatorial NMe₂ ligands (average 2.03 Å) are typical of trigonal bipyramidal zirconium complexes containing these groups.¹⁵ There is no structural precedent for a Zr–NH₂–BX₃ moiety. However, we have reported the synthesis of the complexes $[Zr(Cp){C_5H_4B(C_6F_5)_2}(RHN)CI] (R = {}^{t}Bu \text{ or } H)$, which contain a chelating Zr–NHR–B(C₆F₅)₂ arrangement.¹⁶

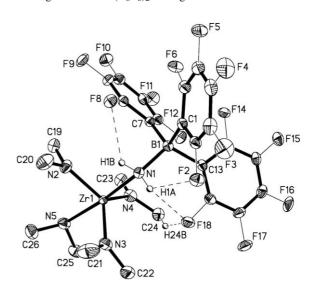


Fig. 1 Structure of 2 (50% displacement ellipsoids; hydrogen atoms not participating in hydrogen bonding omitted for clarity). Selected distances [Å] and angles [°]: Zr(1)-N(3) 2.030(4), Zr(1)-N(2) 2.035(4), Zr(1)-N(4) 2.039(3), Zr(1)-N(1) 2.356(3), Zr(1)-N(5) 2.424(4), B(1)-N(1) 1.587(5), $F(2)\cdots H(1A)$ 2.22(5), $F(8)\cdots H(1B)$ 2.44(7), $F(18)\cdots H(1A)$ 2.22(5); N(4)-Zr(1)-N(1) 101.25(13), N(2)-Zr(1)-N(5) 84.37(14), N(4)-Zr(1)-N(5) 84.18(14), N(1)-Zr(1)-N(5) 173.45(13), B(1)-N(1)-Zr(1) 126.3(2), $N(1)-H(1B)\cdots F(18)$ 113.8.

Treatment of a light petroleum solution of [Ti(NMe₂)₄] with **1** at 0 °C (Scheme 1), followed by concentration and cooling to -25 °C overnight yielded nearly colourless crystals of compound **3**. In contrast to **2**, **3** proved to be sufficiently soluble in benzene-d₆ to allow multinuclear NMR characterization. The ¹H NMR spectrum consisted of a single resonance at δ 2.59 for the NMe₂ group and a broad singlet at δ 2.23, which we assign to an [NH₂B(C₆F₅)₃] ligand. The ¹¹B resonance was found at δ -5.8. Compound **3** was therefore formulated as [Ti(NMe₂)₃-{NH₂B(C₆F₅)₃]. While **3** appeared to be indefinitely stable under nitrogen in the solid state, it decomposed slowly in solution above 0 °C, giving rise to an oil. Decomposition (in toluene-d₈ solution) led to a number of unidentified boron-containing products and was accompanied by the formation of C₆F₅H.

The structure was confirmed by X-ray diffraction.† The titanium is in a distorted tetrahedral environment, coordinated by three amido and one amidoborate ligand (Fig. 2). Bond lengths in the Ti(NMe₂)₃ fragment are in the range normally observed for LTi(NMe₂)₃ complexes.^{15b,17} This is the first example of a monodentate amidoborate ligand bound to titanium. The closest structural precedents are Kol's five-coordinate chelating diaminoborate tris(amido) complex, which shows Ti–N(B) bond lengths of 2.282(4) and 2.302(3) Å,¹⁸ and [Ti(Cp){C₅H₄B(C₆F₅)₂}-{^tBuHN}Cl] (Ti–N = 2.294(2) Å).¹⁶ The Ti–N(1) bond length in **3** is significantly shorter, 2.152(2) Å.

The amidoborate ligands in both **2** and **3** exhibit intramolecular N–H···F–C hydrogen-bonding interactions between the amido NH₂ and *ortho*-fluorines. Similar interactions have been reported in a number of neutral and anionic protic adducts of $B(C_6F_5)_3$.^{3–5} In compounds **2** and **3** the specific pattern in which one NH is engaged in a bifurcated H-bond with two *o*-F acceptors and the second has a single longer contact to a third *o*-F is strikingly similar to that seen in primary amine adducts of $B(C_6F_5)_3$.¹⁹

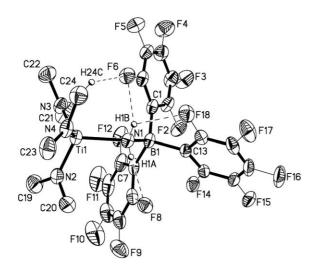


Fig. 2 Structure of 3 (50% displacement ellipsoids; hydrogen atoms not participating in hydrogen bonding omitted for clarity). Selected distances [Å] and angles [°]: Ti(1)–N(3) 1.860(2), Ti(1)–N(2) 1.868(3), Ti(1)–N(4) 1.871(2), Ti(1)–N(1) 2.152(2), B(1)–N(1) 1.605(4), F(6)···H(1B) 2.23(3), F(8)···H(1A) 2.35(3), F(18)···H(1B) 2.22(3); N(3)–Ti(1)–N(1) 113.23(11), N(2)–Ti(1)–N(1) 111.88(11), N(4)–Ti(1)–N(1) 102.60(10), B(1)–N(1)–Ti(1) 129.52(17), N(1)–H(1A)···F(8) 130.9, N(1)–H(1B)···F(6) 114.5, N(1)–H(1B)···F(18) 122.4.

In summary, $H_3N \cdot B(C_6F_5)_3$ reacts as a Brønsted acid with $[M(NMe_2)_4]$ yielding the first examples of group 4 monodentate amidoborate complexes, 2 and 3. Complexes 2 and 3 can be regarded as $B(C_6F_5)_3$ -stabilised $[M(NMe_2)_3(NH_2)]$, the first intermediates in the ammonia-promoted deposition of MN from $[M(NMe_2)_4]$.

This work was supported by the EPSRC (UK), together with Synchrotron Radiation Source beam-time awarded by CCLRC (UK).

Andrew J. Mountford,^{*a*} William Clegg,^{*b*} Ross W. Harrington,^{*b*} Simon M. Humphrey^{*c*} and Simon J. Lancaster^{**a*}

^aWolfson Materials and Catalysis Centre, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK NR4 7TJ. E-mail: S.Lancaster@uea.ac.uk; Fax: 44 1603 592009; Tel: 44 1603 592009 ^bSchool of Natural Sciences (Chemistry), University of Newcastle,

Newcastle upon Tyne, UK NEI 7RU

^cUniversity Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW

Notes and references

† All manipulations were performed under dry and oxygen-free nitrogen using Schlenk-line or glovebox techniques. Toluene, tetrahydrofuran, and light petroleum were dried over appropriate drying agents [Na (toluene), Na/K alloy (light petroleum), Na/benzophenone (THF)] and distilled under nitrogen prior to use. ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra were recorded on a Bruker DPX 300. Chemical shifts are reported in δ units downfield from TMS (¹H, ¹³C), CFCl₃ (¹⁹F), Et₂O·BF₃ (¹¹B), with the solvent as the reference signal. Elemental analyses were carried out by Medac. 2: A solution of Zr(NMe₂)₄ (0.50 g, 1.9 mmol) in toluene (10 mL) was layered over a cooled $(-20 \degree C)$ solution of 1 (0.99 g, 1.9 mmol) in toluene (10 mL). The mixture was allowed to warm to room temperature, during which time a crystalline precipitate formed at the layer interface. After 30 minutes the solid was isolated by filtration (1.2 g, 81%). ¹H NMR (300.13 MHz, THFd₈, 24 °C) δ 2.88 (s, 18H, CH₃), 2.79 (br, 2H, NH₂), 2.70 (s, 6H, CH₂). ¹³C NMR (75.47 MHz, THF-d₈, 24 °C) δ 44.9 (CH₃), 42.4 (CH₃). ¹¹B NMR (96.29 MHz, THF-d₈, 24 °C) δ −2.4. ¹⁹F NMR (282.40 MHz, THF-d₈, 24 °C) δ −131.05 (d, 6F, ³J (F,F) = 19.8 Hz, *o*-F), −160.01 (t, 3F, ³J (F,F) = 19.8 Hz, p-F), -163.49 (m, 6F, m-F). IR (nujol cm⁻¹): 3364, 3292(NH). Elemental analysis calcd (%) for C₂₆H₂₁BF₁₅N₅Zr: C 39.21, H 3.42, N 8.79; found: C 39.15, H 3.33, N 8.67. 3: Ti(NMe₂)₄ (0.439 g, 2.0 mmol) was added to a suspension of 1 (1.036 g, 2.0 mmol) in light petroleum (15 mL) at -20 °C. The mixture was warmed to 0 °C and the reactants dissolved, affording a homogeneous yellow solution. Yellow plates suitable for X-ray crystallography were obtained by cooling the solution to -25 °C overnight (0.92 g, 65%). ¹H NMR (300.13 MHz, benzene-d₆, 24 °C) δ 2.59 (s, 18H, CH₃), 2.23 (br, 2H, NH₂). ¹³C NMR (75.47 MHz, benzene-d₆, 24 °C) δ 43.1 (CH₃). ¹¹B NMR (96.29 MHz, benzene-d₆, 24 °C) δ -5.8. ¹⁹F NMR (282.40 MHz, benzene-d₆, 24 °C) δ -134.17 (d, 6F, ³J (F,F) = 16.9 Hz, o-F), -158.61 (t, 3F, ${}^{3}J$ (F,F) = 22.6 Hz, p-F), -163.93 (m, 6F, *m*-F). IR (nujol cm⁻¹): 3348, 3281 (NH). Elemental analysis calcd (%) for C24H20BF15N4Ti: C 40.71, H 2.85, N 7.91; found: C 40.85, H 2.94, N 7.39. Suitable crystals were immersed in perfluoropolyether oil, mounted on glass fibres and fixed in a low-temperature N2 stream. Intensity data for complex 2 were measured at the Synchrotron Radiation Source at Daresbury on a Bruker SMART 1 K CCD diffractometer ($\lambda = 0.6892$ Å) at 120 K using thin slice ω -scans. Complex 3 was analysed at Cambridge on a Nonius KappaCCD diffractometer (Mo-K α radiation, $\lambda = 0.71073$ Å). Data for **3** were collected at 180 K using ϕ - and ω -scans of 1.0°. Absorption corrections for 3 were made using the $SORTAV^{20}$ utilities and data were processed using the DENZO/SCALEPACK programs.²¹ The structures were determined by direct methods using the software packages $SHELXTL^{22}$ (2) and $SIR-92^{23}$ (3) and refined by full-matrix least-squares methods for all unique F^2 , with all non-hydrogen atoms anisotropic. Crystal data for 2: $C_{26}H_{27}BF_{15}N_5Zr$, $M_r = 796.56$, orthorhombic, space group Pca_{21} , a = 10.7826(18), b = 16.140(3), c = 17.502(3) Å, V = 3045.9(9) Å³, Z = 4, $\rho_{calcd} = 1.737$ Mg m⁻³, silicon-monochromated synchrotron radiation, $\lambda = 0.6892$ Å, T = 120(2) K, $\mu = 0.481$ mm⁻¹. Of the 20458 measured reflections, 6128 were independent ($R_{int} = 0.0602$). The final refinement converged at $R_1 = 0.0439$ ($I > 2\sigma(I)$), $wR_2 = 0.1066$ for all

data. The final difference Fourier synthesis gave a min/max residual electron density of -0.69/0.69 eÅ⁻³. All H atoms were located in difference syntheses and those attached to N atoms were freely refined to avoid presuppositions about their geometry. The polar axis direction for this space group was confirmed by refinement of the enantiopole parameter to a value insignificantly different from zero. CCDC 258171. Crystal data for 3: $C_{24}H_{20}BF_{15}N_4Ti$, $M_r = 708.15$, monoclinic, space group $P2_1/c$, a = 13.5564(2), b = 13.1607(2), c = 15.8983(3) Å, β = 98.2522(7)°, V = 2807.07(8) Å³, Z = 4, ρ_{calcd} = 1.676 Mg m⁻³, λ = 0.71073 Å, T = 180(2) K, μ (Mo-Kα) = 0.428 mm⁻¹. Of the 16178 measured a reflections, 6417 were independent ($R_{\rm int} = 0.0528$). The final refinement converged at $R_1 = 0.0547$ ($I > 2\sigma(I)$), $wR_2 = 0.1467$ for all data. The final difference Fourier synthesis gave a min/max residual electron density of -0.66/0.47 eÅ-3. All hydrogen atoms were located in a difference map and allowed to refine freely, with fixed values for $U_{\rm iso}$, set at 1.2 times $U_{\rm eq}$ of the parent atom. CCDC 258172. See http://www.rsc.org/ suppdata/cc/b5/b500407a/ for crystallographic data in .cif or other electronic format.

- (a) T. J. Marks and E. Y.-X. Chen, *Chem. Rev.*, 2000, **100**, 1391; (b)
 M. Bochmann, S. J. Lancaster, M. D. Hannant, A. Rodriguez, M. Schormann, D. A. Walker and T. J. Woodman, *Pure Appl. Chem.*, 2003, **75**, 1183.
- 2 K. Ishihara and H. Yamamoto, Eur. J. Org. Chem., 1999, 527.
- 3 S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A. Walker, D. L. Hughes and M. Bochmann, *Organometallics*, 2002, 21, 451.
- 4 (a) H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich and O. Meyer, *Organometallics*, 1999, **18**, 1724; (b) C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A. Friesner and G. Parkin, *J. Am. Chem. Soc.*, 2000, **122**, 10581; (c) A. J. Mountford, D. L. Hughes and S. J. Lancaster, *Chem. Commun.*, 2003, 2148.
- 5 (a) T. Beringhelli, D. Maggioni and G. D'Alfonso, Organometallics, 2001, 20, 4927; (b) A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H. Doerrer and M. B. Hursthouse, Chem. Commun., 1998, 2529; (c) L. H. Doerrer and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1999, 4325.
- 6 G. S. Hill, L. Manojlovic-Muir, K. W. Muir and R. J. Puddephatt, Organometallics, 1997, 16, 525.
- 7 D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, B. Walfort and D. Stalke, *Angew. Chem., Int. Ed.*, 2002, 41, 4294.

- 8 (a) A. G. Massey, A. J. Park and F. G. A. Stone, *Proc. Chem. Soc.*, 1963, 212; (b) A. G. Massey and A. J. Park, *J. Organomet. Chem.*, 1964, 2, 245.
- 9 L. E. Toth, in *Transition Metal Carbides and Nitrides*; Academic Press: New York, 1971; D. M. Hoffman, *Polyhedron*, 1994, **13**, 1169 and references therein.
- 10 (a) L. H. Dubois, *Polyhedron*, 1994, **13**, 1329; (b) B. H. Weiller, J. Am. Chem. Soc., 1996, **118**, 4975.
- For pentamethylcyclopentadienyl complexes see: (a) H. W. Roesky, Y. Bai and M. Noltemeyer, Angew. Chem., Int. Ed. Engl., 1989, 28, 754; (b) A. Abarca, P. Gómez-Sal, A. Martin, M. Mena, J. M. Poblet and C. Yélamos, Inorg. Chem., 2000, 39, 642.
- 12 Polynuclear titanium nitrido complexes stabilised by ligands other than pentamethylcyclopentadienyl have been reported: (a) C. J. Carmalt, J. D. Mileham, A. J. P. White and D. J. Williams, *New J. Chem.*, 2000, 24, 929; (b) Z. Duan and J. G. Verkade, *Inorg. Chem.*, 1996, 35, 5325.
- 13 We find that simply bubbling ammonia gas through a hexane solution of $B(C_6F_5)_3$, following the literature procedure,⁸ yields a material with a C : N ratio of 18 : 2, suggesting the association of a second NH₃ equivalent. An analytically pure sample of **1** was prepared by dissolving the crude material in toluene, removing the volatiles and recrystallising from a dichloromethane/light petroleum mixture.
- 14 Evidently the HNMe₂ ligand is not displaced on dissolution in tetrahydrofuran.
- 15 (a) P. N. Riley, P. E. Fanwick and I. P. Rothwell, J. Chem. Soc., Dalton Trans., 2001, 181; (b) J. M. Tanski and G. Parkin, Organometallics, 2002, 21, 587.
- 16 S. J. Lancaster, S. Al-Benna, M. Thornton-Pett and M. Bochmann, Organometallics, 2000, 19, 1599.
- 17 L. Kakaliou, W. J. Scanlon, IV, B. Qian, S. W. Back, M. R. Smith, III and D. H. Motry, *Inorg. Chem.*, 1999, 38, 5964.
- 18 G. Bar-Haim, R. Shach and M. Kol, Chem. Commun., 1997, 229.
- 19 S. J. Lancaster, A. J. Mountford, D. L. Hughes, M. Schormann and M. Bochmann, J. Organomet. Chem., 2003, 680, 193. We have determined the structure of several primary amine adducts: A. J. Mountford and S. J. Lancaster, manuscript in preparation.
- 20 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.
- 21 Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
- 22 G. M. Sheldrick, SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
- 23 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.