
Tandem oxidation processes: a combined phosphorus- and sulfur-ylide approach to polysubstituted cyclopropanes

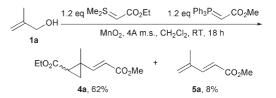
Magalie F. Oswald, Steven A. Raw and Richard J. K. Taylor*

Received (in Cambridge, UK) 13th January 2005, Accepted 24th February 2005 First published as an Advance Article on the web 14th March 2005 DOI: 10.1039/b500396b

A new manganese dioxide-mediated tandem oxidation process (TOP) has been developed which, by suitable combination of stabilised phosphorus- and sulfur-ylides, allows the direct conversion of allylic alcohols or α -hydroxyketones into polysubstituted cyclopropanes.

We have a long-standing interest in the development of manganese dioxide-mediated tandem oxidation processes (TOPs) for the elaboration of alcohols.¹ These TOP methodologies offer a number of advantages to the organic chemist: they are operationally simple, the MnO₂ and its by-products being removed by a simple filtration; they result in a reduced number of operations, giving significant time-cost benefits; they allow the use of "difficult" carbonyl intermediates (*i.e.* those that are volatile, toxic or noxious) as they are prepared and elaborated *in situ*. Initial studies concentrated on 1,2-additions to the carbonyl, *e.g.* olefination^{1a,c} and imine-formation.^{1d} We have recently, however, described a MnO₂-TOP methodology for the conversion of a variety of allylic alcohols into cyclopropanes *via* oxidation and 1,4-trapping of the so-formed acroleins *in situ* with stabilised sulfur-ylides (Scheme 1).²

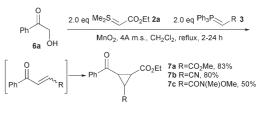
Scheme 1 TOP-cyclopropanation methodology.


We were intrigued by the possibility that the so-formed cyclopropanecarboxaldehydes could be exploited in further *in situ* transformations. We decided to first examine the Wittig reaction, as we have already established the compatibility of phosphorus-ylides with MnO_2 .^{1c}

In general, the addition of ylides to α,β -unsaturated systems can occur *via* two modes; fast but reversible 1,2-addition or slow but irreversible 1,4-addition. We hoped to tune the reaction conditions so that both sulfur- and phosphorus-ylides could be used *in situ*, in the presence of MnO₂, to allow first oxidation, followed by cyclopropanation then olefination.

In pursuit of this concept, we examined the reaction of 2-methylprop-2-en-1-ol **1a** with S-ylide **2a**,^{3a} P-ylide **3a** and activated MnO₂. We were delighted to observe, in our first attempt, the formation of the desired cyclopropane **4a** as a ~1.4:1 mixture of isomers in a yield of 62% (Scheme 2). This was

*rjkt1@york.ac.uk


accompanied by a small but significant amount of dienoate **5a**. We are of the opinion that cyclopropanation occurs faster than olefination for two reasons: (1) TLC analysis indicates complete oxidation–cyclopropanation, giving the known aldehyde,² before significant olefination is observed. (2) When dienoate **5a** was exposed to S-ylide **2a** under similar conditions, only ~50% conversion to **4a** was observed after 16 h.

Scheme 2 TOP-cyclopropanation-olefination.

A brief optimisation study was then carried out, varying temperature and equivalents of ylides **2a** and **3a**. It was quickly established that use of a two-fold excess of S-ylide and carrying out the reaction at reflux gave the best yield of **4a**, 81%, with no dienoate **5a** being observed. These optimum conditions were then shown to work well with a variety of alcohols **1**, S-ylides (**2a**^{3a} and **2b**^{3b}) and P-ylides **3** (Table 1).

We have previously described a TOP–olefination approach to γ -ketocrotonates⁶ from α -hydroxyketones **6** and, with the success of our initial aims, we were keen to expand the current methodology to this concept: We envisaged a complementary sequence whereby cyclopropanes are produced by a "queuing process" in which olefination, subsequent to oxidation, necessarily precedes cyclopropanation (Scheme 3).

Scheme 3 TOP-olefination-cyclopropanation.

As shown, after brief optimisation, conditions were found that allowed conversion of α -hydroxyacetophenone **6a** to the intermediate γ -ketocrotonates by olefination with P-ylides **3a-c**, subsequent *in situ* cyclopropanation (with **2a**) gave the desired products **7a-c** in good to excellent yields. These conditions were

 Table 1
 TOP-cyclopropanation-olefination methodology^{4,5}

Entry	Alcohol		S-ylide		P-ylide		Product		2,3-trans:cis ^a	Yield
i	ОН	1a	Me ₂ S OEt	2a	Ph ₃ P OMe	3a		4 a	~ 3.5:1	81% ^b
i	ОН	1a	Me ₂ S Ph	2b	Ph ₃ P OMe	3a	Ph OMe	4b	~ 3.0:1	66%
ii	Он	1a	 Me₂S、↓	2a	Ph ₃ P CN	3b		4c	c	88%
7	ОН	1b	Me ₂ S OEt	2a	Ph ₃ P OMe	3a		4d	~6.5:1	61%
τ	∕∕он	1b	Me ₂ S Ph	2b	Ph ₃ P OMe	3a	Ph OMe	4e	~ 3.5:1	74%
i	ОТВЅ	1c	Me ₂ S OEt	2a	Ph ₃ POMe	3a		4f	~1.8:1	64%

^{*a*} Ratio determined by integration of ¹H NMR spectra. ^{*b*} When Ph₃PCHCO₂'Bu was used in place of **3a**, the desired cyclopropane was formed (56% yield), accompanied by the corresponding dienoate (27%). ^{*c*} Alkene also showed *E*- and *Z*-isomers. *trans/E:cis/E:trans/Z:cis/Z* ~ 8.5:4.4:3.6:1.0.

then applied to a variety of α -hydroxyketones **6**, P-ylides **3** and S-ylides **2** to give cyclopropanes **7d–i** in similar yields (Table 2). The so-formed cyclopropanes are structurally interesting, being 1,2,3-trisubstituted with differentiated carbonyl groups. Of particular note is the use of hydrocortisone **6f** (entry vi), showing the applicability of this methodology to complex, multi-functional substrates. Moreover, NMR spectroscopy shows that just one

isomer of the product **7i** predominates, implying regio- and stereoselectivity in the *in situ* cyclopropanation step.

In conclusion, we have developed two related MnO₂-mediated TOP methodologies which exploit the combination of sulfur- and phosphorus-ylides to give polysubstituted cyclopropanes. These methodologies both comprise three discrete transformations in a single manipulation, which is followed by simple work-up and

Entry	α-Hydroxyketone		P-ylide		S-ylide		Product ^a		Yield
i	Ph	6a	Ph ₃ P OEt	3e	Me ₂ S Ph	2b	Ph Ph	7d	81%
ii	OH OH	6b ⁷	Ph ₃ P OMe	3a	Me ₂ S Ph	2b	OCO2Et O Ph	7e	63% ^b
iii	ОН	6c	Ph ₃ P OMe	3a	Me ₂ S Ph	2b	O O O Ph	7f	60% ^c
iv	OH OH	6d ⁷	Ph ₃ P OMe	3a	Me ₂ S OEt	2a	CO ₂ Et	7g	60%
V	Ph OH	6e ⁷	Ph ₃ P OMe	3a	Me ₂ S OEt	2a	Ph CO ₂ Me	7h	51%
vi		6f	Ph ₃ P OEt	3e	Me ₂ S OEt	2a	HO Me H CO ₂ Et	7i	78%
							O CO2Et		

 Table 2
 TOP-olefination-cyclopropanation methodology^{4,5}

^{*a*} Isolated as a mixture of isomers about the cyclopropane. ^{*b*} When S-ylide **2a** was used, the corresponding cyclopropane was isolated in 54% yield. ^{*c*} When S-ylide **2a** was used, the corresponding cyclopropane was isolated in 55% yield.

purification. We are currently optimising this methodology and applying it to target synthesis.

Magalie F. Oswald, Steven A. Raw and Richard J. K. Taylor* Department of Chemistry, University of York, Heslington, York, UK YO10 5DD. E-mail: rjkt1@york.ac.uk; Fax: +44(0)1904 434 523; Tel: +44(0)1904 432 606

Notes and references

- For examples see: (a) S. A. Raw, M. Reid, E. Roman and R. J. K. Taylor, Synlett, 2004, 819; (b) S. A. Raw, C. D. Wilfred and R. J. K. Taylor, Org. Biomol. Chem., 2004, 2, 788; (c) X. Wei and R. J. K. Taylor, J. Org. Chem., 2000, 65, 616; (d) L. Blackburn and R. J. K. Taylor, Org. Lett., 2001, 3, 1637 and references therein.
- 2 M. F. Oswald, S. A. Raw and R. J. K. Taylor, Org. Lett., 2004, 6, 3997.

- 3 (a) G. B. Payne, J. Org. Chem., 1967, 32, 3351; (b) J. Quintana, M. Torres and F. Serratosa, *Tetrahedron*, 1973, 29, 2065.
- 4 General procedure: to a solution of alcohol (1 or 6) in CH₂Cl₂ was added sequentially powdered 4Å molecular sieves (1.0 g per mmol of alcohol), S-ylide 2 (2.0 eq.), P-ylide 3 (1.2 eq. for alcohol 1, 2.0 eq. for 6) and activated MnO₂ (10.0 eq.). The mixture was heated to reflux and monitored by TLC. After complete consumption of starting material and all expected intermediates (*i.e.* cyclopropanecarboxaldehydes or γ -ketocrotonates), the mixture was cooled, filtered through Celite⁴⁰ and concentrated *in vacuo*. The crude reaction mixture was then purified by column chromatography, giving the product (4 or 7).
- 5 All known compounds gave satisfactory data, all novel compounds were fully characterized by spectroscopic methods and HRMS.
- 6 K. A. Runcie and R. J. K. Taylor, Chem. Commun., 2002, 974.
- 7 Non-commercially available α-hydroxyketones⁵ were synthesised according to a literature procedure: R. M. Moriaty, B. A. Berglund and R. Penmaster, *Tetrahedron Lett.*, 1992, **33**, 6065.