β -sheet recognition in the non-interpenetrated and interpenetrated twodimensional coordination networks containing cavities[†]

Madhushree Sarkar and Kumar Biradha*

Received (in Cambridge, UK) 14th January 2005, Accepted 16th February 2005 First published as an Advance Article on the web 9th March 2005 DOI: 10.1039/b500666j

Two types of secondary building units of $CuI (Cu_2I_2 \text{ and } Cu_4I_4)$ were shown to generate 2D-coordination networks of (4,4)-topology (non-interpenetrated and interpenetrated) with *exo*-bidentate ligands that contain diamide as spacer.

The rational design and syntheses of coordination polymers have given an impetus to property oriented crystal engineering and supramolecular chemistry.¹ In the last decade several coordination polymers with predefined functional properties, particularly porosity, have been explored.² In most of the studies the ligands used are the exo-bidentate pyridyl ligands which have either phenyl (rigid) or alkyl (flexible) groups as spacers.³ The interactions between these spacers are edge-to-face or face-to-face aromatic or hydrophobic interactions which are not strong enough to hold the layers together. To date there are only a few examples in which the layered coordination polymers are held together by strong hydrogen bonds.⁴ Accordingly we selected ligand 1 in order to design coordination networks in which the spacer, diamide, is capable of forming a β -sheet hydrogen bond pattern (I).⁵ Further, the ligand is flexible and capable of exhibiting conformational isomerism due to the free rotation around $sp^3 H_2C-CH_2$ bonds.

Besides the selection of the ligand, the proper choice of metal atom, counter anion and solvent molecules are also important aspects to get the required coordination network that contains a β -sheet pattern. In this work we have selected CuI as a suitable metal salt considering the following facts: CuI is capable of forming four connected nodes and the counter anion, I⁻, does not interfere in the formation of a hydrogen bond pattern and also strongly binds to the Cu-atom to form a variety of aggregates or secondary building units (SBU) which further leads to the formation of higher dimensional networks. Accordingly in the

† Electronic supplementary information (ESI) available: ORTEP drawings and crystallographic tables for **2**, **3** and **4**, TGA plot for complex **2** and syntheses of complexes **2** and **3**. See http://www.rsc.org/suppdata/cc/b5/b500666j/

present work, the reaction of CuI with the ligand 1 resulted in two types of 2D-networks of (4,4) topology which are different in many aspects. For example, one is composed of SBU-I⁶ and forms a non-interpenetrated 2D-network with elliptical cavities that are occupied by guest molecules. While the other is composed of SBU-II⁷ and forms a 2D-network that is doubly interpenetrated in a parallel fashion. Interestingly, both the networks exhibited a β -sheet hydrogen bond pattern.

The diffusion of a CH₃CN solution of CuI into a CHCl₃–EtOH solution of ligand 1 resulted in the single crystals of the two types of complexes $[(Cu_2I_2)(1)_2 \cdot (CHCl_3)_3]_n$ (2) and $[(Cu_4I_4)(1)_2]_n$ (3).⁸ The single crystal analysis of the complex 2 revealed the formation of a non-interpenetrated 2D-network containing cavities of elliptical shape. Whereas the structure of 3 indicates the formation of doubly interpenetrated network.

In the crystal structure of 2, the CuI forms a SBU-I in which each Cu is connected to two I-atoms and two pyridyl moieties in a tetrahedral fashion [Cu-I: 2.610(1); 2.654(1) Å; Cu-N 2.079(7)] Å.‡ Further, the two Cu-atoms of SBU-I are connected to each other with a distance of 2.721(3) Å. The ligand 1 joins SBU-I units with a distance of 15.9 Å such that there is a formation of a 2D-network of (4,4)-topology containing elliptical cavities (Fig. 1a). The cavities have the shortest axis of 15.6 Å and longest axis of 30 Å. These 2D-layers pack on each other with a small interlayer separation in an offset fashion via β -sheet hydrogen bonds [N···O: 2.882(9) Å and N-H...O: 158°] and form continuous channels which are occupied by guest molecules (Fig. 1b and 1c). The channels are elliptical and the size of the channels is roughly half (7.8 \times 15 Å) of the size of the cavities of the 2D-network (15.6 \times 30 Å). However, the guest molecules are heavily disordered and the proportion of the guest, three CHCl₃ molecules per SBU-I, was estimated using elemental and TGA analyses.9 The calculated guest occupied volume in the crystal lattice is 37%.^{10,11} Further, the N-C-C-N torsion angle of 1 in 2 is 180°, indicating the linearity and anti conformation of the ligand (Fig. 1d).

The crystal structure of **3** reveals the formation of SBU-II which can act as an approximate tetrahedral node (Fig. 2a).§ The four Cu-atoms of SBU-II form a tetrahedron *via* Cu···Cu interactions [2.595(1), 2.722(1) 2.709(2) and 2.729(2) Å] and I-atoms do not cap the faces but four edges of the tetrahedron through Cu–I bonds [2.580(1), 2.609(1), 2.554(1) and 2.581(1) Å] such that two opposite edges of the tetrahedron are left free. Further, the I-atoms make short non-bonded contacts with the third Cu-atom [3.196(1); 2.990(1) Å].¹² The ligands **1** join the SBU-II units with a distance of 13.116 Å such that it forms a 2D-network containing square cavities with diagonal-to-diagonal distances of 18 and 22 Å.

^{*}kbiradha@chem.iitkgp.ernet.in

Fig. 1 Illustrations of the crystal structure of **2**: a) part of the 2Dnetwork (C = grey, N = blue, O = red, Cu = brown and I = magenta); packing of the 2D-networks b) view along *a*-axis and c) view along *b*-axis. Alternate layers are coloured in red and green. Please note the hydrogen bonds between the layers; d) β -sheet network.

Two of these networks interpenetrate in a parallel fashion *via* aromatic interactions between pyridyl moieties (Fig. 2b and 2c).¹³ However the networks are highly corrugated as they are constituted by tetrahedral nodes and a non linear conformation of the ligand. Unlike in the structure of **2**, here the ligand adopts the gauche conformation with an N–C–C–N torsion angle of 60° to provide the arc type geometry. The doubly interpenetrated networks interdigitate into the adjacent layers *via* a β -sheet hydrogen bond pattern [N···O, N–H···O: 2.929(6) Å, 165° and 2.952(6) Å, 163°] (Fig. 3).

It is noteworthy that the β -sheet network was not observed in the crystal structures of phenyl or 2-pyridyl analogues of the ligand 1.¹⁴ To demonstrate the importance of selection of the right metal salt, we carried out a similar reaction between Cu(NO₃)₂ and 1 that resulted in the complex [Cu(1)(H₂O)₄·(NO₃)₂]_n, 4. The crystal structure of 4, reveals the formation of a 1D-coordination

Fig. 2 Illustrations of the crystal structure of 3: a) ORTEP drawing of SBU-II; two-fold interpenetration of 2D-networks in a parallel fashion; b) view along *c*-axis; c) view along *a*-axis. The interpenetrated networks are shown in two different colours.

Fig. 3 a) Packing of interpenetrated layers in the crystal structure of 3, note the interdigitation of interpenetrated layers. Alternate layers are colored in red and green; β -sheet network observed in 3: b) view along *a*-axis and c) view along *c*-axis.

Fig. 4 One-dimensional network exhibited in the crystal structure of **4**. Only H-atoms corresponding to amide groups are shown.

network¹⁵ in which the Cu-atom has octahedral geometry as it is connected to two ligands, in *trans* fashion, and four H₂O molecules (Fig. 4).¶ However, the 1D-chains in **4** are not combined together through a β -sheet pattern as the H₂O molecules and NO₃ anions interfere in the self recognition of the ligands.

We gratefully acknowledge financial support from the Department of Science and Technology (DST) and DST-FIST for single crystal X-ray facility. MS thanks CSIR for a research fellowship.

Madhushree Sarkar and Kumar Biradha*

Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India. E-mail: kbiradha@chem.iitkgp.ernet.in; Fax: +91-3222-282252; Tel: +91-3222-283346

Notes and references

‡ The single crystal data was collected on a Bruker-Nonius Mach3 CAD4 X-ray diffractometer that uses graphite monochromated Mo Ka radiation $(\lambda = 0.71073 \text{ \AA})$ by the ω -scan method. The structures were solved by direct methods and refined by least square methods on F^2 using SHELX-97. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were fixed at calculated positions and refined using a riding model. Crystal data for 2: Monoclinic, C2/m, a = 9.649(2) Å, b = 15.559(3) Å, c = 15.163(3) Å, $\beta = 91.96(3)^\circ$, V = 2275.1(8) Å³, Z = 2, $D_c = 2000$ 1.868 g cm⁻³, 1404 reflections out of 2064 unique reflections with $I > 2\sigma(I)$, $1.34 < \theta < 24.97^{\circ}$, final R-factors $R_1 = 0.0649$, $wR_2 = 0.1885$. The CHCl₃ molecules are heavily disordered. Eight peaks corresponding to CHCl₃ were found and refined as C-atoms. However, the plot of these peaks did not suggest any chemically recognized species. Therefore the structure was further refined using the platon-squeeze option. The final R-factors $R_1 = 0.0485$, $wR_2 = 0.1467$. Elemental analysis: found: C, 28.62; H, 2.21; N, 8.96%; calcd: C, 29.07; H, 2.42, N, 8.75%. CCDC 253151. See http:// www.rsc.org/suppdata/cc/b5/b500666j/ for crystallographic data in .cif or other electronic format.

§ Crystal data for 3: Monoclinic, P2/c, a = 11.312(2) Å, b = 10.012(2) Å, c = 16.597(3) Å, $\beta = 97.25(3)^{\circ}$, V = 1864.7(6) Å³, Z = 4, $D_c = 2.320$ g cm⁻³, 2520 reflections out of 3078 unique reflections with $I > 2\sigma(I)$, $2.03 < \theta < 24.97^{\circ}$, final R-factors $R_1 = 0.0405$, $wR_2 = 0.1101$. Elemental analysis: found: C, 25.97; H, 1.82; N, 8.61%; calcd: C, 25.80; H, 2.15; N, 8.60%. CCDC 253152.

¶ Crystal data for 4: Monoclinic, $P2_1/n$, a = 10.214(2) Å, b = 7.125(1) Å, c = 14.425(3) Å, $\beta = 99.98(3)^\circ$, V = 1033.9(4) Å³, Z = 2, $D_c = 1.702$ g cm⁻³, 1543 reflections out of 1815 unique reflections with $I > 2\sigma(I)$, 2.27 $< \theta < 24.97^\circ$, final R-factors $R_1 = 0.0444$, $wR_2 = 0.1333$. CCDC 253153.

 (a) S. R. Batten and R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460;
(b) O. M. Yaghi, H. Li, C. Davis, D. Richardson and T. L. Groy, Acc. Chem. Res., 1998, 31, 474; (c) S. Kitagawa and M. Kondo, Bull. Chem. Soc. Jpn., 1998, 71, 1739; (d) D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson and M. Schröder, Angew. Chem., 2001, 113, 2510; (e) S. A. Bourne, J. Lu, A. Mondal, B. Moulton and M. J. Zaworotko, Angew. Chem., 2001, 113, 2169; (f) K. Biradha, CrystEngComm., 2003, 5, 274.

- (a) H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, *Nature*, 1999, 402, 276; (b) S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, *Science*, 1999, 283, 1148; (c) S.-I. Noro, S. Kitagawa, M. Kondo and K. Seki, *Angew. Chem. Int. Ed.*, 2000, 39, 2082; (d) J.-S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, *Nature*, 2000, 404, 982; (e) B. F. Abrahams, P. A. Jackson and R. Robson, *Angew. Chem. Int. Ed.*, 1998, 37, 2656; (f) C. J. Kepert and M. J. Rosseninsky, *Chem. Commun.*, 1999, 375; (g) A. J. Fletcher, E. J. Cussen, T. J. Prior, M. J. Rosseninsky, C. J. Kepert and K. M. Thomas, *J. Am. Chem. Soc.*, 2001, 123, 10001.
- 3 (a) M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 1994, 116, 1151; (b) R. W. Gable, B. F. Hoskins and R. Robson, J. Chem. Soc., Chem. Commun., 1990, 1677; (c) M. J. Zaworotko, Chem. Commun., 2001, 1; (d) K. Biradha, Y. Hongo and M. Fujita, Angew. Chem. Int. Ed., 2000, 39, 3843; (e) K. Biradha and M. Fujita, in Crystal Design: Structure and Function, ed. G. R. Desiraju, John Wiley Publishers, UK, 2003, vol. 7, pp. 211–239; (f) L. R. MacGilivray, R. H. Groeneman and J. L. Atwood, J. Am. Chem. Soc., 1998, 120, 2676; (g) M. Sarkar and K. Biradha, CrystEngComm., 2004, 6, 310.
- 4 K. Uemura, S. Kitagawa, K. Fukui and K. Saito, J. Am. Chem. Soc., 2004, 126, 3817.
- 5 Recently the ligand 1 was shown to form 1D-coordination networks: S. Muthu, J. H. K. Yip and J. Vittal, J. Chem. Soc., Dalton Trans., 2001, 3577.
- 6 (a) K. Biradha and M. Fujita, J. Inclusion Phenom. Macrocyclic Chem., 2001, 41, 201; (b) K. Biradha, M. Aoyagi and M. Fujita, J. Am. Chem. Soc., 2000, 122, 2397; (c) O. M. Yaghi and G. Li, Angew. Chem., Int. Ed. Engl., 1995, 34, 207; (d) S. Q. Liu, H. Konaka, T. Kuroda-Sowa, Y. Suenaga, H. Ito, G. L. Ning and M. Munakata, Inorg. Chim. Acta, 2004, 356, 3621.
- 7 The Cambridge Structural Database analysis of SBU-II which connected to four N-atoms resulted in 13 compounds, but all of them form discrete species. Recently, SBU-II was shown to form a macrocycle with *exo*-bidentate pyridyl ligand: R.-H. Wang, M.-C. Hong, J.-H. Luo, R. Cao and J.-B. Weng, *Eur. J. Inorg. Chem.*, 2002, 3097.
- 8 It is possible to exclusively synthesize **2** or **3** by increasing or decreasing, respectively, the amount of CHCl₃ in the reaction.
- 9 TGA of 2: gradual weight loss (7%) of 2 occurred from 50–125 °C, which corresponds to the removal of about 0.35 molecules of CHCl₃. From 125–131 °C, there is sharp weight loss (15%) which corresponds to the removal of the rest of the CHCl₃ from 2. From 131 °C–258 °C, the curve is almost linear, indicating no further loss up to 258 °C. The weight percentage during this period is 77.3% which corresponds to the weight of the host alone [Cu₂I₂·(1)₂].
- A. L. Spek, *PLATON—A Multi Purpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands, 2002.
- 11 The crystals of complex **2**, when placed in CCl₄, were found to exchange CHCl₃ with CCl₄ without altering the crystal structure. This is confirmed by single crystal structure, NMR and elemental analysis.
- 12 CSD analyses of the geometry of SBU-II reveal that the one observed here is unique as I-atoms cap the edges of a tetrahedron, with two short Cu–I distances. Usually, the I-atoms cap the faces of the tetrahedron, with Cu–I distances of 2.6–2.7. F. H. Allen, *Acta Crystallogr., Sect. B: Struct. Sci.*, 2002, **58**, 380.
- 13 Example of parallel mode 2-fold interpenetration of (4,4)-networks (2D to 2D): T. Soma and T. Iwamoto, *Chem. Lett.*, 1994, 821.
- 14 (a) A. Palmer and F. Brisse, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1980, 36, 1447; (b) F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta., 1988, 43, 142.
- 15 A. Y. Robin, K. M. Fromm, H. Goesmann and G. Bernardinelli, *CrystEngComm.*, 2003, 5, 405.
- 16 (a) G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.