Synthesis and structures of a 3-sila-β-diketiminatomagnesium bromide, ketenimide and triflate[†]

James D. Farwell, Peter B. Hitchcock, Michael F. Lappert* and Andrey V. Protchenko

Received (in Cambridge, UK) 20th January 2005, Accepted 21st February 2005 First published as an Advance Article on the web 10th March 2005 DOI: 10.1039/b500878f

The crystalline compounds $[Mg(Br)(L)(thf)] \cdot 0.5Et_2O$ [L = {N(R)C(C₆H₃Me₂-2,6)}₂SiR, R = SiMe₃] (1), [Mg(L)-{N=C=C(C(Me)=CH)₂CH₂}(D)₂] [D = NCC₆H₃Me₂-2,6 (2), thf (3)] and [{Mg(L)}₂{µ-OSO(CF₃)O-µ}₂] (4) were prepared from (a) Si(Br)(R){C(C₆H₃Me₂-2,6)=NR}₂ and Mg for (1), (b) [Mg(SiR₃)₂(thf)₂] and 2,6-Me₂C₆H₃CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me₃SiOS(O)₂CF₃ for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me₃SiN=C=C{C(Me)=CH}₂CH₂ (5).

β-Diketiminates are currently among the most widely used spectator ligands;¹ they are generally π-delocalised and *N*,*N*'-chelating, as in I (R = SiMe₃).² By contrast, in a 3-sila-analogue, much of the negative charge is localised at the 3-silicon atom, as in II, prepared from [Li(SiR₃)(thf)₃] and 2 ArCN (Ar = C₆H₃Me₂-2,6).³ The only other 3-sila-β-diketiminatometal complexes to have been described are [M{(N(R)=C(Ar))₂SiR}]₂ (M = Na,⁴ K,⁴ Rb^{3b}), [Hg{Si(R)(C(Ar)=NR)₂]₂],^{3b} [R₂Si{C(Ar)=NR}₂],^{3b} and [RSi(SnMe₃){C(Ar)=NR}₂].^{3b}

We now present data on four crystalline heteroleptic 3-sila- β diketiminatomagnesium complexes. The bromide **1** was obtained by a quasi-Grignard procedure from the bis(imidoyl)trimethylsilyl-(bromo)silane **III**,^{3b} eqn. (1).[‡] Silyl Grignard reagents⁵ are usually prepared *via* transmetallation with an alkali metal silyl;^{5a,b} the direct synthesis from halosilanes required the use of pyrophoric magnesium and an additional chelating donor ligand.^{5c} Two imidoyl substituents in the bromosilane **III** activate its Si–Br bond and serve as *N*-donor ligands thus facilitating the reaction with Mg metal.

† Electronic Supplementary Information (ESI) available: (i) synthesis of **3** and **4**; (ii) X-ray data for **1**, **2**, **3** and **4**. See http://www.rsc.org/suppdata/cc/ b5/b500878f/

*m.f.lappert@sussex.ac.uk

The remarkable compounds **2** and **3**, containing rare examples of a terminally coordinated ketenimido ligand $>C=C=N^-$ (specifically **A**), were prepared (i in Scheme 1) from the magnesium silyl **IV**^{5*a*} with 2,6-dimethylbenzonitrile (>4 mol for **2**,‡ or 3 mol for **3**†). The 2,6-dimethylbenzaldiminato ligand **A**' is the tautomer of **A**.

The "extra" hydrogen atom attached to the six-membered ring of A in 2 or 3 did not arise from solvent, because when the reaction i of Scheme 1 was performed in toluene-d₈ or thf-d₈ no ²H incorporation into the product was observed. Hence, we conclude that the H-source is the eliminated SiR₃. The compound $[Mg[{(N(R)C(Ar))_2SiR](NCAr)(D)_2}][SiR_3],$ as a tight ion or radical pair, either affords 2/3 via a C...SiR₃ intermediate (C32 in Figs. 2 or 3) or does so via [Mg(H)]{(N(R)-C(Ar)₂SiR](NCAr)(D)₂]. The possible coproduct, R₂ SiCH₂SiMe₂, its dimer, or HSiR₃, have not been identified by GC/MS. That the compounds 2 and 3 contain A, rather than A', is attributed to steric constraints. In support, we note that from [Mg(SiR₃)₂(thf)₂] (IV) and 2- or 4-MeC₆H₄CN or

PhCN in place of ArCN, a dearomatised product was not observed (as shown by the absence of vinyl and allylic proton signals in the ¹H NMR spectra of the reaction mixtures).

Treatment of 2 with trimethylsilyl triflate yielded (ii in Scheme 1) the binuclear bis(triflato)-bridged magnesium 3-sila-β-diketiminate 4,† demonstrating the greater ease of nucleophilic displacement from 2 of the ketenimido ligand than of the 3-sila- β -diketiminate. Although the presumed major coproduct trimethylsilyl ketenimide 5 was not isolated in the crystalline state and complete separation from ArCN was not achieved, the ¹H NMR spectrum (see ESI)† supports its formulation to be as shown in Scheme 1 and not of the tautomer N-trimethylsilyl-2,6-dimethylbenzaldimine ArCH=NSiMe₃. Thus, the four ring protons of the A ligand of 5 gave rise to multiplets, in the ¹H NMR spectrum in C_6D_6 , centred at δ 3.10 (CH₂: ³J 6.4, ⁵J 2.0 Hz) and δ 5.10 [(CH₂: ³J 6.4, ${}^{4}J$ 2.0 Hz), with the CCH₃ protons centred at δ 1.80. The singlet at δ -0.32 is assigned to the SiMe₃ protons. The complexity of the ring proton signals is attributed to the inequivalence of the two protons of the CH_2 group and the two sets of CH ring protons, due to the SiMe3 group being neither coplanar with nor orthogonal to the ring plane; this was confirmed by selective irradiation of the CCH₃ protons, when the multiplets at δ 3.10 and δ 5.10 collapsed into triplets. Similar features were observed, attributed to the A ligand, in the ¹H NMR spectra of 2 or 3 in C_6D_6 .

The molecule of the monomeric crystalline 1, illustrated in Fig. 1, lies on a mirror plane, with the ligated thf disordered across the mirror.§ The ether solvate is disordered over a site of 2/m symmetry. The 3-sila- β -diketiminato ligand parameters of 1 differ from those in II in that the N–C bonds are longer (1.306 ± 0.003 Å in II)³ and the endocyclic C–Si bonds are shorter (1.881 Å in II).³ The six-membered ring in both 1 and II³ has a pronounced boat conformation, the Si1 and Mg atoms in 1 being *ca*. 0.41 and *ca*. 0.65 Å, respectively, out of the C1N1C1'N1' plane. The sum of the three angles at Si1 is 346.7(4)°, that at N1 is 360°.

In the structure of the crystalline **3**, shown in Fig. 2, the magnesium atom has a distorted trigonal-bipyramidal environment and is coplanar with the three equatorial nitrogen atoms, the two oxygen atoms occupying the axial positions.§ The bite angle

Fig. 1 Molecular structure of crystalline **1**. Selected bond lengths (Å) and angles (°): Mg–Br 2.4692(15), N1–C1 1.323(4), C1–Si1 1.858(3), Mg–N1 2.074(3), Mg–O1 2.021(4) Å; N1–Mg–N1′ 106.33(16), Mg–N1–C1 115.6(2), N1–C1–Si1 126.5(2), C1–Si1–Si4 117.78(10)°.

Fig. 2 Molecular structure of crystalline **3**. Selected bond lengths (Å) and angles (°) (see also Fig. 3): Mg–N1 2.124(4), Mg–N2 2.133(4), Mg–N3 2.061(5), Mg–O1 2.152(3), Mg–O2 2.158(3), N1–C1 1.345(6), N2–C2 1.328(6), C1–Si3 1.839(5), C2–Si3 1.855(5) Å; Mg–N3–C28 178.3(4), N1–Mg–N2 108.71(16), N1–C1–Si3 127.0(3), C1–Si3–C2 117.4(2), N2–C2–Si3 128.1(3), Mg–N1–C1 119.3(3), Mg–N2–C2 118.6(3), O1–Mg–O2 170.73(15), O1–Mg–N1 89.84(14), O1–Mg–N2 92.64(14)°.

N1–Mg–N2 of the 3-sila- β -diketiminato ligand is the narrowest of the equatorial angles subtended at the Mg atom. Of the three Mg–N bonds, that to **A** (Mg–N3) is shorter than the other two. The angles subtended at N3 and the adjacent C28 are close to 180°, and the geometric parameters of the **A** ligand (Fig. 3) confirm that it is correctly formulated. The 3-sila- β -diketiminato ligand parameters of **3** differ from those in **II** in that (i) the N–C bonds are longer but similar to those in **1**; (ii) the endocyclic C–Si bonds are shorter and close to those in **1**; (iii) the conformation of the 6-membered ring is a shallow chair, the Mg and Si atoms being *ca*. -0.12 and *ca*. 0.10 Å out of the C1N1C2N2 plane; and (iv) the endocyclic angle at Si3, similar to that in **1**, is much wider than in **II** [108.8(1)°].³ The structure of crystalline **2** (see ESI)† is closely similar to that of **3**, except that in **3** the axial positions are occupied by thf rather than the ArCN ligands of **2**.

There are rare examples of complexes with bridging ketenimido ligands: $[\text{Li}(\text{tmen}) \{\mu\text{-N}=\text{C}=\text{C}(\text{H})\text{Ph} \}]_2$,^{6a} $[\{\text{Li}(\text{tmen})\}_2 \{\mu\text{-N}=\text{C}=\text{C}(\text{H})\text{Ph}\}(\mu\text{-N}\text{Pr}^i_2)]^{6b}$ (an example of a quasi-dianion complex, QUADAC⁷), $[\text{Na}\{\mu\text{-N}=\text{C}=\text{CMe}_2\}(\text{tmen})]_4^{6c}$ and $[\text{MMe}_2 \{\mu\text{-N}=\text{C}=\text{CPh}_2\}(\text{thf})]_2$ (M = Ga or In).^{6d} These have C=N and C=C bond lengths very similar to those in A of 2 or 3 [C=N: 1.15(3),^{6a} 1.173(7),^{6b} av. 1.187^{6c} and 1.188(5) Å (In);^{6d} and

Fig. 3 Bond lengths (Å) and angles (°) of the A ligand of crystalline 3: a 117.1(5), b 121.4(5), c 124.3(5), d 111.4(5), e 124.3(5), f $121.4(5)^{\circ}$.

C=C: 1.38(2),^{6a} 1.383(8),^{6b} av. 1.360^{6c} and 1.359(5) Å $(In)^{6d}$]. Examples of terminally coordinated ketenimido complexes include $[Ir(\eta^{5}-C_{5}Me_{5})(N=C=CPh_{2})(Ph)(PMe_{3})]$ with N=C and C=C bond lengths of 1.168(6) and 1.377(7) Å, respectively,^{8a} and $[Ir{N=C=C(CN)CH(CN)_2}(TCNE)(PPh_3)_2]$.^{8b} The closest equivalent to compounds 2 and 3 is the head-to-tail dimer of coordinated obtained the nitrile, from [Mo(H)(η³- $Me_2CNAr(NPr^iAr)_2$ and 9-cyanoanthracene (Ar = $C_6H_3Me_2$ -3,5), in which the Mo-N=C=C(9)< fragment has N=C and C=C bond lengths of 1.213(7) and 1.347(7) Å, respectively, the C(10) of the anthracenyl moiety being pyramidalised.9 Most of these compounds were obtained by deprotonation of an acidic α-CH group of the parent nitrile;^{6,8a} the only example of an aromatic nitrile being dearomatised is the Mo complex, where such an unusual reactivity was accounted for by the increased steric demands of the bulky 9-anthracenyl moiety.⁹

In conclusion, four crystalline heteroleptic 3-sila-β-diketiminatomagnesium compounds $Mg(L)X [L = {N(R)C(Ar)}_2SiR]$ $(Ar = C_6H_3Me_2-2, 6, R = SiMe_3)$ 1-4 have been prepared and structurally characterised. The following features are noteworthy. (i) The bromide $[Mg(Br)(L)(thf)] \cdot 0.5Et_2O(1)$ was made by a quasi-Grignard procedure, involving direct interaction of Mg metal with a corresponding bromosilane. (ii) The ketenimides $[Mg(L)(A)(D)_2]$ [D = NCAr (2), thf (3)], obtained from $[Mg(SiR_3)_2(thf)_2]$ and ArCN, are rare examples of compounds containing a terminal ketenimido ligand $\overline{N}=C=C\{C(Me)=CH\}_2CH_2 (\equiv A)$, rather than its tautomer $\bar{N}=C(H)Ar$ ($\equiv A'$). (iii) The triflate [{Mg(L)}₂{ μ - $OSO(CF_3)O-\mu_{2}$ (4) was derived from 2 and $Me_3SiOS(O)_2CF_3$; evidence the trimethylsilyl for ketenimide $Me_3SiN=C=C\{C(Me)=CH\}_2CH_2$ (5) as a coproduct came from analysis of ¹H NMR spectra.

We thank BASF (Ludwigshafen) for providing a studentship for J. D. F., EPSRC for a fellowship for A. V. P., and Dr. A. G. Avent for useful discussions.

James D. Farwell, Peter B. Hitchcock, Michael F. Lappert* and Andrey V. Protchenko

The Chemistry Department, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk; Fax: +44 (0)1273 677196; Tel: +44 (0)1273 678316

Notes and references

‡ Synthesis: Magnesium powder (0.5 g, 20.8 mmol) was added to a stirred solution of the yellow Si(Br)(R){C(C₆H₃Me₂-2,6)=NR}₂ (III) (1.12 g, 1.90 mmol) in Et₂O (20 ml) at *ca.* 20 °C. After *ca.* 24 h the dark red mixture was filtered and thf (1 ml) was added. The filtrate was concentrated and stored at -30 °C, yielding dark red crystals of compound 1 (1.28 g, 93%) (Found: C, 52.0; H, 7.91; N, 3.91. C₃₃H₅₈BrMgN₂O_{1.5}Si₄ requires C, 54.8; H, 8.08; N, 3.87%), mp 230 °C, decomp. *ca.* 240 °C. ¹H NMR: $\delta - 0.38$ (9H, s, SiSi*Me*₃), 0.23 (18H, s, NSi*Me*₃), 1.31 (4H, m, thf), 2.3 (3H, t, J = 6.9, Et₂O), 2.41 (12H, s, C₆H₃*Me*₂), 3.26 (2H, q, J = 6.9, Et₂O), 4.01 (4H, m, thf), 6.78 (4H, d, J = 7.6, *m*-H of Ar), 6.91 (2H, t, J = 7.6, *p*-H of Ar); ¹³C: δ 1.45 (SiSi*Me*₃), 3.12 (NSi*Me*₃), 15.72 (Et₂O), 2.075 (C₆H₃*Me*₂), 25.38 (thf), 66.01 (Et₂O), 70.80 (thf), 128.08 (*p*-C of Ar), 128.31 (*m*-C of

Ar), 134.45 (o-C of Ar), 146.86 (ipso-C of Ar), 220.42 (N=C-Si); ²⁹Si: δ -13.59 (SiSiMe₃), -2.21 (SiSiMe₃), 5.47 (NSiMe₃). 2,6-Dimethylbenzonitrile (1.70 g, 13.0 mmol) was added to a stirred solution of [Mg{Si(SiMe₃)₃}₂(thf)₂] (IV) (2.15 g, 3.24 mmol) in pentane (100 ml) at -78 °C. The mixture slowly became an intense crimson upon warming to ca. 20 °C. After 1 d, volatiles were removed in vacuo. The residue was extracted into pentane (60 ml), concentrated and stored at -30 °C for 1 d, yielding crimson crystals of compound 2 (1.44 g, 48%), (Found: C, 68.4; H, 7.85; N, 7.38. $C_{54}H_{73}MgN_5Si_4$ requires C, 69.8; H, 7.92; N, 7.54%), decomp. at *ca*. 85 °C. ¹H NMR: δ –0.34 (9H, s, SiSi*Me*₃), 0.14 (18H, s, NSiMe₃), 2.17 (12H, s, C₆H₃Me₂), 2.24 (6H, s, Me₂ of A), 2.40 (12H, s, NCC₆H₃Me₂), 3.77 (2H, m, CH₂ of A), 5.02 (2H, m, CH of A), 6.42 to 6.51 (m, 4H), 6.73 to 6.82 (m, 6H), 6.89 to 6.96 (m, 2H); ¹³C NMR: δ 1.06 (SiSiMe₃), 1.86 (NSiMe₃), 20.3 (C₆H₃Me₂), 20.48 (NCC₆H₃Me₂), 22.56 (Me2 of A), 34.39 (CH2 of A), 105.95 (C=C=N of A), 132.2 (CH of A), 134.2 (CMe of A), 146.50 (C=C=N of A), 218.44 (endocyclic C of L). § Crystal data: 1: $C_{31}H_{53}BrMgN_2OSi_4 \cdot 0.5(C_4H_{10}O), M = 723.38$, orthorhombic, space group *Pnnm* (No. 58), a = 13.7171(3), b = 18.2354(5), c = 16.7049(5)Å, $\hat{V} = 4178.5(2)$ Å³, Z = 4, μ (Mo– K_{α} , 0.71073 Å) = 1.14 mm⁻¹, T = 173(2) K, R1 = 0.065 [for 3695 reflections with $I > 2\sigma(I)$], wR2 = 0.173 (all data). **2**: C₅₄H₇₃MgN₅Si₄, M = 928.84, monoclinic, space group $P2_1/n$ (No. 14), a = 12.5706(3), b = 34.3614(8), c = 12.8282(4) Å, $\beta = 94.777(1)^{\circ}, V = 5521.8(3) \text{ Å}^3, Z = 4, \mu(\text{Mo}-K_{\alpha}, 0.71073 \text{ Å}) =$ 0.16 mm⁻¹, T = 173(2) K, R1 = 0.062 [for 6636 reflections with $I > 2\sigma(I)$], wR2 = 0.147 (all data). 3: C₄₄H₇₁MgN₃O₂Si₄, M = 810.71, triclinic, space group $P\overline{1}$ (No. 2), a = 10.6444(11), b = 13.2595(17), c = 17.768(2) Å, $β = 90.285(5), β = 98.141(8), γ = 110.075(8)^\circ, V = 2327.8(5) Å^3, Z = 2, μ(Mo-K_{ax}, 0.71073 Å) = 0.18 mm^{-1}, T = 173(2) K, R1 = 0.062 [for 3826 reflections with <math>I > 2σ(I)$], wR2 = 0.140 (all data). 4: $C_{56}H_{90}F_6Mg_2N_4O_6S_2Si_8$, M = 1366.78, monoclinic, space group $P2_1/c$ (No. 14), a = 16.8609(2), b = 23.2225(4), c = 19.0143(3) Å, $\beta = 92.4670(10)^{\circ}, V = 7438.19(19) \text{ Å}^3, Z = 4, \mu(\text{Mo}-K_{\alpha}), V = 7438.19(19) \text{ Å}^3$ $0.71073 \text{ Å}) = 0.28 \text{ mm}^{-1}$, T = 173(2) K, R1 = 0.053 [for 14520 reflections with $I > 2\sigma(I)$, wR2 = 0.151 (all data). CCDC numbers: 1: 260822; 2: 260823; 3: 260824; 4: 260825. See http://www.rsc.org/suppdata/cc/b5/ b500878f/ for crystallographic data in .cif format

- 1 L. Bourget-Merle, M. F. Lappert and J. R. Severn, *Chem. Rev.*, 2002, 102, 3031.
- 2 P. B. Hitchcock, M. F. Lappert, M. Layh, D.-S. Liu, R. Sablong and T. Shun, J. Chem. Soc., Dalton Trans., 2000, 2301.
- 3 (a) P. B. Hitchcock, M. F. Lappert and M. Layh, *Chem. Commun.*, 1998, 2179; (b) J. D. Farwell, M. A. Fernandes, P. B. Hitchcock, M. F. Lappert, M. Layh and B. Omondi, *Dalton Trans.*, 2003, 1719.
- 4 J. D. Farwell, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 2002, 456.
- 5 (a) J. D. Farwell, M. F. Lappert, C. Marschner, C. Strissel and T. D. Tilley, *J. Organomet. Chem.*, 2000, **603**, 185; (b) F. Luderer, H. Reinke and H. Oehme, *Z. Anorg. Allg. Chem.*, 1998, **624**, 1519; (c) R. Goddard, C. Krüger, N. A. Ramadan and A. Ritter, *Angew. Chem.*, *Int. Ed. Engl.*, 1995, **34**, 1030.
- 6 (a) G. Boche, M. Marsch and K. Harms, Angew. Chem., Int. Ed. Engl., 1986, 25, 373; (b) W. Zarges, M. Marsch, K. Harms and G. Boche, Angew. Chem., Int. Ed. Engl., 1989, 28, 1392; (c) J. Barker, N. D. R. Barnett, D. Barr, W. Clegg, R. E. Mulvey and P. A. O'Neil, Angew. Chem., Int. Ed. Engl., 1993, 32, 1366; (d) E. Iravani and B. Neumüller, Organometallics, 2003, 22, 4129.
- 7 P. J. Crowley, M. R. Leach, O. Meth-Cohn and B. J. Wakefield, *Tetrahedron Lett.*, 1986, 27, 2909.
- (a) D. M. Tellers, J. C. M. Ritter and R. G. Bergman, *Inorg. Chem.*, 1999, 38, 4810; (b) J. C. Ricci, J. A. Ibers, M. S. Fraser and W. H. Baddley, *J. Am. Chem. Soc.*, 1970, 92, 3489.
- 9 Y.-C. Tsai, F. H. Stephens, K. Meyer, A. Mendiratta, M. D. Gheorghiu and C. C. Cummins, *Organometallics*, 2003, 22, 2902.