Total syntheses of fully lipidated glycosylphosphatidylinositol anchors of *Toxoplasma gondii*[†]

Yong-Uk Kwon, Xinyu Liu and Peter H. Seeberger*

Received (in Cambridge, UK) 27th January 2005, Accepted 21st February 2005 First published as an Advance Article on the web 10th March 2005 DOI: 10.1039/b501373a

Modular syntheses of the glycosylphosphatidylinositol anchors of *Toxoplasma gondii* using a highly convergent strategy are reported.

Toxoplasma gondii is a ubiquitous protozoan parasite that is the origin of congenital infection and severe encephalitis, a major cause of death among AIDS patients.¹ Toxoplasmosis is a benign and asymptomatic infection that can be controlled by the immune system of healthy adults, even though primordial infection during pregnancy may cause congenital toxoplasmosis with the risk of severe infection of the fetus.² Glycosylphosphatidylinositols (GPIs) are a class of naturally occurring glycolipids that link proteins and glycoproteins *via* their C-terminus to cell membranes. GPI anchors of *T. gondii* are low molecular weight antigens that elicit an early immune response in humans.^{3,4} During toxoplasmal pathogenesis GPIs induce the production of tumor necrosis factor- α (TNF α).⁵ Purified *T. gondii* GPIs induce the production of TNF α in macrophages.⁵

Structural analyses of GPI anchors revealed a conserved core structure containing a row of mannoses that is connected to inositol *via* a glucosamine unit. Inositol carries a phospholipid, while the mannoses are decorated by one or more phosphate ethanolamine moieties. Different GPIs have been synthesized using various synthetic strategies and methodologies.⁶ Synthetic GPI oligosaccharides are needed to evolve a detailed structure–activity relationship of GPI anchors from different species. Here we report the first total synthesis of a series of fully lipidated *T. gondii* GPI glycans (Fig. 1).

Strategically, complete GPI glycan backbone hexasaccharide 3, equipped with orthogonal protective groups that mark points to

Fig. 1 GPIs of T. gondii origin and retrosynthetic plans.

† Electronic supplementary information (ESI) available: copies of ¹H, ¹³C and ³¹P NMR spectra for all new compounds. See http://www.rsc.org/ suppdata/cc/b5/b501373a/ *seeberger@org.chem.ethz.ch be modified at a later stage, served as our initial key target. Silyl and allyl ethers mask the sites to be phosphorylated, using H-phosphonate chemistry.⁷ Hexasaccharide **3** was to be prepared *via* a 4 + 2 coupling between a branched tetrasaccharide and a glucosamine-inositol pseudodisaccharide (Fig. 1). Access to the target structures **1** and **2** would require introduction of the phosphate diester appendages using different H-phosphonate reagents, before hydrogenolysis would result in global deprotection.

Executing this plan, the assembly of tetrasaccharide trichloroacetimidate **10** commenced with the preparation of key mannoside **5** for the installation of the branching galactosamine moiety. Differentially protected mannose 4^{6f} was readily available from D-mannose. The regioselective opening of the *p*-methoxybenzylidene group of mannose **4** by exposure to sodium cyanoborohydride under trimethylsilyl chloride activation furnished **5**,⁸ where the 6-hydroxyl group was available for elongation of the mannose chain (Scheme 1). Coupling of mannosyl trichloroacetimidate **11**⁹ and 4-*O*-PMB-protected mannoside **5** provided disaccharide **6** with concomitant removal of the PMB ether protective group thus readying the nucleophile for the next glycosidation. The acid lability of the PMB group can be exploited to access branched or unbranched GPI structures by varying the temperature of the coupling reaction. At low temperatures the PMB group is retained

Scheme 1 Assembly of key hexasaccharide 3. a) NaCNBH₃, TMSCl, CH₃CN, 67%; b) 11, TMSOTf, CH₂Cl₂, 92%; c) 13, TMSOTf, CH₂Cl₂, 93%; d) HCl (AcCl, CH₃OH), 70%; e) 14, TMSOTf, CH₂Cl₂, 98%; f) AIBN, Bu₃SnH, toluene, 94%; g) PdCl₂, NaOAc, AcOH, H₂O, 83%; h) Cl₃CCN, DBU, CH₂Cl₂, 86%; i) 15, TMSOTf, CH₂Cl₂, 91%; j) HOP(O)(OBu)₂, toluene, 58%.

and thus access to unbranched glycans can be achieved, while at higher temperatures the PMB group is lost and branched structures are obtained. A host of reaction conditions failed to induce the coupling of disaccharide 6 and galactosamine trichloroacetimidate 12.66 However, galactosamine dibutylphosphate 13, derived from 12, readily reacted with 6 to give trisaccharide in 93% yield. At the stage of the trisaccharide, an acetate ester had to be cleaved while leaving the benzoate unscathed. Treatment with methanolic hydrogen chloride cleanly lived up to the task. Glycosylation of trisaccharide 7 by activation of differentially protected mannose 14¹⁰ yielded tetrasaccharide 8. The N-trichloroacetyl group present in 8 was transformed into the resident N-acetate by treatment with AIBN and Bu₃SnH furnishing 9. Preparation of tetrasaccharide unit 10 proceeded via removal of the anomeric allyl group with palladium(II) chloride in acetate buffer,¹¹ followed by installation of the trichloroacetimidate leaving group with trichloroacetonitrile and DBU. Coupling of tetrasaccharide 10 with glucosamine-inositol pseudodisaccharide $15^{6d,7a}$ afforded key hexasaccharide 3 in 91% yield.

The protecting groups present in 3 were readied for further functionalization by replacing all esters by benzyl ethers to avoid base treatment at the final stages, when lipid ester groups have been placed. Ester cleavage by sodium methoxide was followed by benzylation with benzyl bromide (2.2 molar eq.) and sodium hydride to give 17. The undesired N-benzylation was not observed (Scheme 2). Desilylation by exposure to scandium triflate freed the hydroxyl group that served as the site of phosphorylation using H-phosphonate 23^{6a} before oxidation with wet iodine provided 19. Now, in anticipation of a further phosphorylation and thereby introduction of different phospholipids, treatment with palladium(II) chloride in acetate buffer¹¹ removed the allyl ether to give 20. Two H-phosphonates (26 and 27) were derived from commercially available glycerols 24 and 25 following established procedures.¹² Installation of the phospholipids 26 and 27 afforded fully protected hexasaccharides 21 and 22 respectively. Only global deprotection remained and was accomplished in a single step by hydrogenolysis over Pearlman's catalyst.^{6c} The synthetic target GPIs 1 and 2 were obtained in excellent yield.

Scheme 2 Synthesis of GPI 1 and 2. a) NaOMe, MeOH–CH₂Cl₂, 82%; b) BnBr, NaH, TBAI, 4Å MS, DMF, 88%; c) Sc(OTf)₃, H₂O, CH₃CN, 97%; d) 23, PivCl, pyridine, then I₂, H₂O, 95%; e) PdCl₂, NaOAc, AcOH, H₂O, 87%; f) PCl₃, imidazole, Et₃N, toluene, 90–95%; g) 26 (or 27), PivCl, Py, then I₂, H₂O, 65–75%; h) Pd(OH)₂, H₂, AcOH, CHCl₃–CH₃OH–H₂O (10:10:3), 90–99%.

In conclusion, we have developed a convergent synthetic route to fully lipidated GPI glycans of *T. gondii*. Our synthetic strategy provides the flexibility to vary the GPI core structure to access other GPI structures for biological investigations. The new synthetic GPIs 1 and 2 found on *T. gondii* serve as molecular probes to assay the effect of defined GPIs on macrophages and to establish a structure–activity relationship for GPI-receptor interactions.[‡]

This research was supported by the ETH Zürich. Y.-U. Kwon thanks Korea Science and Engineering Foundation (KOSEF) for financial support (Postdoctoral Fellowship).

Yong-Uk Kwon, Xinyu Liu and Peter H. Seeberger*

Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland. E-mail: seeberger@org.chem.ethz.ch; Fax: +41-1-633-1235; Tel: +41-1-633-3121

Notes and references

‡ Compounds 21 and 22: a mixture of 20 (0.01 mmol) and H-phosphonate 26 or 27 (0.05 mmol) was co-evaporated with pyridine (3 \times 3 mL) and dried in vacuo. To a solution of the residue in pyridine (2 mL) was added pivaloyl chloride (0.1 mmol) at room temperature. After the mixture had been stirred for 5 h, water (0.05 mL) and iodine (0.06 mmol) were added. After 1 h, the mixture was diluted with CH₂Cl₂ and washed with 1 M aqueous Na2S2O3 solution and water. The organic phase was dried over MgSO₄, filtered and concentrated. Chromatography (MeOH-CH₂Cl₂ gradient with 1% Et₃N) afforded fully protected hexasaccharides 21 and 22 (65–75%), respectively. Compound **21**: $[\alpha]_D^{25}$ + 19.0 (c = 1.65 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 0.85–0.89 (m, 6H), 1.19–1.37 (m, 48H), 1.48– 1.58 (m, 4H), 1.94 (s, 3H), 2.19–2.24 (m, 4H), 3.10–5.02 (m, 85H), 5.21–5.24 (m, 1H), 5.91 (d, J = 3.3 Hz, 1H), 6.37 (m, 1H), 7.05–7.35 (m, 90H); ³¹P NMR (121 MHz, CDCl₃): δ -1.31, 0.32; HRMS-ESI (m/z): calcd for $C_{202}H_{243}N_5O_{42}P_2$ [M]²⁻, 1736.8265; found 1736.8240. Compound **22**: $[\alpha]_D^{25} + 23.1$ (c = 1.0 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 0.85–0.89 (m, 6H), 1.13–1.36 (m, 56H), 1.47–1.59 (m, 4H), 1.94 (s, 3H), 2.17–2.26 (m, 4H), 3.20–5.04 (m, 85H), 5.21–5.24 (m, 1H), 5.92 (d, J = 3.6 Hz, 1H), 6.38 (m, 1H), 7.05–7.33 (m, 90H); ³¹P NMR (121 MHz, CDCl₃): $\delta - 1.17, 0.54$; HRMS-ESI (m/z): calcd for C₂₀₆H₂₅₁N₅O₄₂P₂ [M]²⁻, 1764.8578; found 1764.8606.

Compounds 1 and 2: a mixture of 21 or 22 (5.0 µmol), Pd(OH)2/C (30 mg) and acetic acid (25 mg) in a mixed solvent (CH₃OH:CHCl₃ = 1:1, 2 mL) was stirred under H₂ (1 atm). After 5 h, water (0.3 mL) was added. After stirring for 30 h, the catalyst was filtered off through a pad of Celite and the solvent was evaporated under reduced pressure. The crude products were triturated with CH₂Cl₂ to give the GPI glycans 1 and 2 (90-99%), respectively. Compound 1: ¹H NMR (300 MHz, DMSO $d_6:D_2O = 40:1$, selected peaks only): δ 0.80–0.84 (m, 6H), 1.17–1.30 (m, 48H), 1.37–1.46 (m, 4H), 1.81 (s, 3H), 2.23–2.26 (m, 4H), 4.26 (d, J = 4.5 Hz, 1H), 4.76 (s, 1H), 4.89 (s, 1H), 5.06 (s, 1H); ³¹P NMR (121 MHz, DMSO- d_6 :D₂O = 40:1): δ -1.22, -0.28; MALDI-TOF-MS (*m/z*): calcd for C₇₅H₁₄₀N₃O₄₀P₂ [M + Na]⁺, 1806.8; found 1807.2. Compound 2: ¹H NMR (300 MHz, DMSO- $d_6:D_2O = 40:1$, selected peaks only): $\delta 0.81-0.88$ (m, 6H), 1.16–1.24 (m, 48H), 1.40–1.48 (m, 4H), 1.82 (s, 3H), 2.23–2.28 (m, 4H), 4.26 (d, J = 4.2 Hz, 1H), 4.81 (s, 1H), 4.85 (s, 1H), 5.05 (s, 1H); ³¹P NMR (121 MHz, DMSO- d_6 :D₂O = 40:1) δ -1.98, -0.83; MALDI-TOF-MS (m/z): calcd for C₇₉H₁₄₈N₃O₄₀P₂ [M + H]⁺, 1840.9; found 1841.0.

- 1 B. J. Luft and J. S. Remington, Clin. Infect. Dis., 1992, 15, 211-222.
- 2 J. S. Remington and G. Desmonts, in *Infectious Diseases of the Fetus and Newborn Infant*, ed. J. S. Remington and J. O. Klein, W. B. Saunders Co., Philadelphia, 1990, pp. 89–195.
- 3 B. Striepen, C. F. Zinecker, J. B. L. Damm, P. A. T. Melgers, G. J. Gerwig, M. Koolen, J. F. G. Vliegenthart, J. F. Dubremetz and R. T. Schwarz, J. Mol. Biol., 1997, 266, 797–813.
- 4 B. Striepen, J. F. Dubremetz and R. T. Schwarz, *Biochemistry*, 1999, **38**, 1478–1487.
- 5 F. Debierre-Grockiego, N. Azzouz, J. Schmidt, J. F. Dubremetz, H. Geyer, R. Geyer, R. Weingart, R. R. Schmidt and R. T. Schwarz, *J. Biol. Chem.*, 2003, 278, 32987–32993.

- 6 (a) C. Murakata and T. Ogawa, *Carbohydr. Res.*, 1992, 235, 95–114;
 (b) T. G. Mayer, B. Kratzer and R. R. Schmidt, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 2177–2181; (c) A. S. Campbell and B. Fraser-Reid, *J. Am. Chem. Soc.*, 1995, 117, 10387–10388; (d) D. K. Baeschlin, A. R. Chaperon, L. G. Green, M. G. Hahn, S. J. Ince and S. V. Ley, *Chem. Eur. J.*, 2000, 6, 172–186; (e) M. Martín-Lomas, N. Khiar, S. García, J. L. Koessler, P. M. Nieto and T. W. Rademacher, *Chem. Eur. J.*, 2000, 6, 3608–3621; (f) K. Pekari, D. Tailler, R. Weingart and R. R. Schmidt, *J. Org. Chem.*, 2001, 66, 7432–7442; (g) K. Pekari and R. R. Schmidt, *J. Org. Chem.*, 2003, 68, 1295–1308; (h) J. Xue and Z. Guo, *J. Am. Chem. Soc.*, 2003, 125, 16334–16339; (i) J. Lu, K. N. Jayaprakash, U. Schlueter and B. Fraser-Reid, *J. Am. Chem. Soc.*, 2004, 126, 7540–7547.
- 7 (a) P. H. Seeberger, R. R. Soucy, Y. U. Kwon, D. A. Snyder and T. Kanemitsu, *Chem. Commun.*, 2004, 1706–1707; (b) X. Liu and P. H. Seeberger, *Chem. Commun.*, 2004, 1708–1709.
- 8 R. Johansson and B. Samuelsson, J. Chem. Soc., Perkin Trans. 1, 1984, 2371–2374.
- 9 F. Yamazaki, S. Sato, T. Nukada, Y. Ito and T. Ogawa, *Carbohydr. Res.*, 1990, **201**, 31–50.
- 10 M. C. Hewitt, D. A. Snyder and P. H. Seeberger, J. Am. Chem. Soc., 2002, 124, 13434–13436.
- 11 T. Ogawa, S. Nakabayashi and T. Kitajima, *Carbohydr. Res.*, 1983, 114, 225–236.
- 12 I. Lindh and J. Stawinski, J. Org. Chem., 1989, 54, 1338-1342.