Spectroscopic and crystallographic evidence for the N-protonated Fe^IFe^I azadithiolate complex related to the active site of Fe-only hydrogenases[†]

Fujun Wang,^{*a*} Mei Wang,^{*a*} Xiaoyang Liu,^{*ab*} Kun Jin,^{*a*} Weibing Dong,^{*a*} Guanghua Li,^{*b*} Björn Åkermark^{*c*} and Licheng Sun^{*ad*}

Received (in Cambridge, UK) 8th March 2005, Accepted 15th April 2005 First published as an Advance Article on the web 18th May 2005 DOI: 10.1039/b503371c

The complex [{(μ -SCH₂)₂N(CH₂C₆H₄-2-Br)}Fe₂(CO)₆] and its N-protonated species, as structural models of the Fe-only hydrogenase active site, were identified spectroscopically and crystallographically, and their molecular structures show the 0.04–0.1 Å lengthening of the three N–C bonds and an intramolecular H···Br contact (2.82 Å) in the crystalline state of the N-protonated species.

Since high-quality structures of the Fe-only hydrogenases isolated from *Desulfovibrio desulfuricans* and *Clostridium pasteurianum* have been revealed,^{1,2} the structural and functional models of the Fe-only hydrogenase active site (H-cluster) have turned out to be an alluring topic. The latest spectroscopic, crystallographic and theoretical studies suggest that the tether between the two iron atoms of the H-cluster is $-SCH_2NHCH_2S-.^{3,4}$ Density functional calculations show that the proposed pathway for the heterolytic cleavage or formation of H₂ via the protonation of the bridging-N atom may provide a kinetically and thermodynamically favorable route for the Fe-only hydrogenase active site.⁵ A specially attractive issues is the potential function of the bridging-N atom as a suitable base to extract and transfer protons in the process of enzymatic H₂-evolution.⁶

The diiron azadithiolate model complexes and their reactivity have been hitherto less reported in the literature despite the putative significance of the bridging-N in the H-cluster.^{7–11} Although the protonated species of Fe^IFe^I propanedithiolate complexes have been well studied in recent years,^{12–15} efforts to isolate the N-protonated form of the Fe^IFe^I azadithiolate model complex have been unsuccessful so far.^{16,17} To stabilize the N-protonated species, we designed the Fe^IFe^I azadithiolate complex with an *ortho*-bromobenzyl group, [{(µ-SCH₂)₂N-(CH₂C₆H₄-2-Br)}Fe₂ (CO)₆] (1), the N-protonated species of which is indeed more stable than the N-protonated *para*-bromo analogue. The dithiolate complex [{(µ-SCH₂)₂NH(CH₂C₆H₄-2-Br)}Fe₂(CO)₆]⁺ClO₄⁻ [1(NH)], as a model of the N-protonated Fe-only hydrogenase active site, was successfully isolated and crystallographically identified for the first time.

Complex 1 was prepared in moderate yield by treatment of $Li_2Fe_2S_2(CO)_6$ with $(ClCH_2)_2NCH_2C_6H_4$ -2-Br in THF.^{7,18}

Protonation of 1 in CHCl₃ with an excess of aqueous HClO₄ solution afforded an orange precipitate [1(NH)] in good yield; it was washed with hexane and recrystallized in CH₂Cl₂–CH₃CN. Complex 1 is relatively stable in the solid state and in O₂-free solution, while its N-protonated form is gradually deprotonated in neutral solution.

Complex **1** in CH₃CN solution displays three v(CO) bands at 2074, 2035, 1997 cm⁻¹ in IR spectrum [Fig. 1(a)]. As an excess of HClO₄ was added to the CH₃CN solution of **1** the v(CO) bands shifted *ca*. 17 cm⁻¹ to higher frequencies [Fig. 1(b)],^{11,16} appearing at the same wavenumbers as its corresponding N-protonated complex **1**(NH). With the addition of 0.4 equiv. of pyridine to the CH₃CN solution of **1**(NH), six v(CO) bands appear in the IR spectrum [Fig. 1(c)], indicative of the equilibrium between **1** and **1**(NH). The further addition of pyridine up to one equiv. results in a shift of the v(CO) absorptions to frequencies essentially equal to those of **1** [Fig. 1(d)].

The reversible protonation and deprotonation processes of **1** and **1**(NH) are shown also by the ¹H NMR spectra (Fig. 2). As 5 equiv. of HClO₄ was added to the CD₃CN solution of **1**, the singlet of the CH_2 group of the benzyl moiety at δ 4.01 [Fig. 2(a)] shifts down field by 0.53 ppm, and the singlet of the CH_2 S groups at δ 3.73 splits into two broad signals at δ 3.37 and 4.19 [Fig. 2(b)].

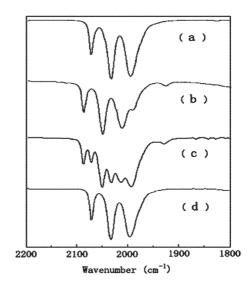


Fig. 1 FT-IR spectra of (a) 1 in CH₃CN, (b) 1 + 10 equiv. of HClO₄ in CH₃CN, (c) 1(NH) + 0.4 equiv. of pyridine in CH₃CN, (d) 1(NH) + 1 equiv. of pyridine in CH₃CN.

[†] Electronic Supplementary Information (ESI) available: Experimental details and selected bond lenths and angles for 1 and 1(NH). See http:// www.rsc.org/suppdata/cc/b5/b503371c/ *symbueno@dlut.edu.cn (Mei Wang) lichengs@kth.se (Licheng Sun)

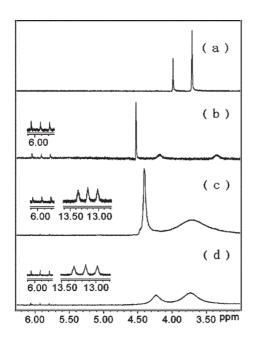


Fig. 2 ¹H NMR spectra of (a) 1 in CD₃CN, (b) 1(NH) in CD₃CN, (c) 1(NH) + 0.2 equiv. pyridine in CD₃CN, (d) 1(NH) + 0.4 equiv. pyridine in CD₃CN.

In addition, a triplet with ${}^{1}J_{\rm NH} = 53$ Hz appears at δ 5.92, attributed to the proton of the NH group of 1(NH). The splitting and broadening of the CH_2S resonance in the ¹H NMR spectrum of 1(NH) indicates that after N-protonation of 1 the folding of the FeS_2C_2N ring is slowed down. The two protons, which are on the equatorial bonds relative to the 6-membered ring [Fe(1)S(2)C(15)N(1)C(14)S(1), Fig. 3] and *cis* to the proton of the NH group, should display higher resonances than the ones on the vertical bonds and trans to the proton of the NH group. All observations in the ¹H NMR spectra are consistent with the protonation of the bridging-N atom. No signal is detected in the high field region (-10 to -20 ppm), which confirms that protonation does not occur at the Fe-Fe site.^{12,15}

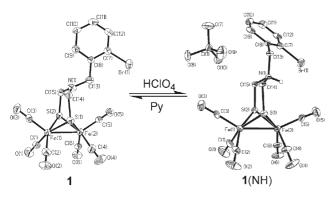


Fig. 3 Protonation and deprotonation processes and molecular structures of 1 and 1(NH) with thermal ellipsoid set at 30% probability level. Selected distances (Å) and angles (°) for 1: Fe–Fe, 2.5330(10); Fe–S, 2.2518(13)–2.2652(14); Fe–C, 1.781(6)–1.806(6); S–C, 1.863(5)–1.866(5); N–C, 1.416(6)–1.462(6); C(14)–N–C(15), 117.8(4); C(14)–N–C(13), 118.3(4); C(15)–N–C(13), 121.7(4); for 1(NH): Fe–Fe, 2.498(2); Fe–S, 2.237(3)–2.257(3); Fe–C, 1.767(11)–1.831(13); S–C, 1.813(8)–1.819(7); N–C, 1.456(11)–1.542(9); C(14)–N–C(15), 113.1(6); C(14)–N–C(13), 105.8(6); C(15)–N–C(13), 113.8(6); C–N–H, 108.0.

Interestingly, with the addition of 0.2 equiv. of pyridine to the CD₃CN solution of 1(NH), a triplet with ${}^{1}J_{\rm NH} = 68$ Hz emerges at δ 13.15, accompanied by a decrease in the intensity of the triplet at δ 5.92. The newly-formed triplet in the low field region of the 1 H NMR spectrum is attributed to the NH of protonated pyridine.¹⁹ At the same time the two bumps of the CH₂S groups are combined into one broad signal [Fig. 2(c)]. The singlet arising from the CH₂ of the benzyl group is broadened and shifted to higher field by 0.28 ppm on addition of a further 0.2 equiv. of pyridine [Fig. 2(d)]. The subsequent addition of pyridine up to 1 equiv. changes the two broad signals of the CH₂ groups into two sharp singlets and all signals move back to the original chemical shifts of **1**. Figs. 2(c) and 2(d) prove that in the presence of pyridine the deprotonation of **1**(NH) occurs instantly to afford **1** and pyridinium perchlorate (Fig. 3).

To obtain unambiguous evidences for the N-protonation of 1, the molecular structures of 1 and its protonated form 1(NH) were determined by X-ray analyses of single crystals (Fig. $3\ddagger$).¹⁸ The central 2Fe2S structures of 1 and 1(NH) are both in the butterfly framework and each Fe atom is coordinated in the familiar pseudo-pyramidal geometry as in previously reported 2Fe2S models.^{8–11} Although the structures of the Fe₂S₂(CO)₆ moieties of 1 and its *para*-bromo analogue are quite similar,²⁰ the tertiary amine moiety of 1 features an apparently different conformation from its *para*-bromo analogue, probably resulting from the steric hindrance of the *ortho*-bromo substituent. The sum of the angles at the bridging-N of 1 is *ca*. 358°, suggesting an sp²-hybridized N atom, while it is 341° for the *para*-bromo analogue,^{20,21} roughly consistent with an sp³-hybridization of the N atom.

A ready comparison of the structures of 1 and 1(NH) shows conspicuous discrepancies in the following aspects. The C(5)Fe(2)Fe(1) [156.2(3)°] of 1(NH) is ca. 7° wider than its corresponding C(3)Fe(1)Fe(2) angle $[149.4(3)^{\circ}]$, and both angles are enlarged by $6-7^{\circ}$ as compared with that of 1, bringing relief of the spatial congestion between the ortho-Br, apical CO and NH groups. The N-protonation of 1 results in an elongation of the three N-C bonds by 0.04-0.1 Å, as anticipated. It is noticeable that the ortho-bromobenzyl group of 1 resides in a quasi-vertical position relative to the Fe(1)S(2)C(15)N(1)C(14)S(1) ring (Fig. 3), while the benzyl group stands in an equatorial position in 1(NH). In the light of the C-N-C angles, 117.8(4)-121.7(4)° for 1 and 105.8(6)– $113.8(6)^{\circ}$ for 1(NH), the N atom of 1(NH) possesses a distorted tetrahedral conformation, which is in contrast to the pseudo-triangular conformation at the N atom of 1. The other considerable discrepancy is that as the bridging-N of 1 is protonated the benzene ring of 1(NH) rotates towards the C(3)O(3) ligand and is angled backwards. The proper N···Br distance [3.334(7) Å] for intramolecular N-H…Br interactions may potentially promote the stability of the N-protonated species.18

In summary, we have successfully isolated and characterized the first N-protonated Fe^IFe^I azadithiolate model complex of the Feonly hydrogenase active site by introduction of an *ortho*bromobenzyl group to the bridging-N atom. Protonation and deprotonation processes between the azadithiolate complex and its N-protonated form are instant and reversible. The results of this work give experimental support to the argument that the bridging-N atom of the Fe-only hydrogenase active site may perform a function as the proton capturer and carrier in the enzymatic $\mathrm{H}_{2}\text{-}\mathrm{production}$ process.

We are grateful to the Chinese National Natural Science Foundation (Grant nos. 20471013 and 20128005), the Swedish Energy Agency and the Swedish Research Council for financial support of this work.

Fujun Wang,^a Mei Wang,^{*a} Xiaoyang Liu,^{ab} Kun Jin,^a Weibing Dong,^a Guanghua Li,^b Björn Åkermark^c and Licheng Sun^{*ad}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Zhongshan Road 158-46, 116012, Dalian, P. R. China. E-mail: symbueno@dlut.edu.cn; Fax: +86 411 83702185; Tel: +86 411 88993886 ^bState Key Laboratory of Inorganic Synthesis and Preparative

Chemistry, Jilin University, 130012, Changchun, P. R. China ^cDepartment of Organic Chemistry, Stockholm University, Sweden ^dKTH Chemistry, Organic Chemistry, Royal Institute of Technology,

10044, Stockholm, Sweden. E-mail: lichengs@kth.se

Notes and references

‡ Crystal data for 1: C₁₅H₁₀BrFe₂NO₆S₂, M = 555.97, orthorhombic, space group *Pbca*, a = 13.3549(9), b = 14.8313(10), c = 19.7845(11) Å, V = 3918.7(4) Å³, T = 293 K, Z = 8, $\mu = 3.764$ mm⁻¹, 27109 reflections measured, 4888 unique ($R_{int} = 0.1567$) which were used in all calculations. The final $wR(F^2)$ was 0.0793 (all data). CCDC 244661. Crystal data for 1(NH): C₁₅H₁₁BrClFe₂NO₁₀S₂, M = 656.43, monoclinic, space group *P*2(1)/*c*, a = 22.953(10), b = 6.611(3), c = 15.033 (6) Å, $\beta = 104.63(3)^{\circ}$, V = 2207.2(16) Å³, T = 293 K, Z = 4, $\mu = 3.488$ mm⁻¹, 14151 reflections. The final $wR(F^2)$ was 0.1947 (all data). The high values of R(int) for 1 and 1(NH) may be caused by the reason that the crystals were slightly strained by partial relaxation of the twin coherence. CCDC 258455. See http:// www.rsc.org/suppdata/cc/b5/b503371c/ for crystallographic data in CIF format.

1 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, *Science*, 1998, **282**, 1853–1858.

- 2 Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps, *Structure*, 1999, 7, 13–23.
- 3 Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps and J. W. Peters, *Trends Biochem. Sci.*, 2000, **25**, 138–143.
- 4 Y. Nicolet, A. L. Lacey, X. Vernède, V. M. Fernandez, E. C. Hatchikian and J. C. Fontecilla-Camps, J. Am. Chem. Soc., 2001, 123, 1596– 1601.
- 5 H. Fan and M. B. Hall, J. Am. Chem. Soc., 2001, 123, 3828-3829.
- 6 D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003, 32, 268-275.
- 7 J. D. Lawrence, H. Li and T. B. Rauchfuss, Chem. Commun., 2001, 1482–1483.
- 8 H. Li and T. B. Rauchfuss, J. Am. Chem. Soc., 2002, 124, 726-727.
- 9 S. Ott, M. Kritikos, B. Åkermark and L. Sun, Angew. Chem., Int. Ed., 2003, 42, 3285–3288.
- 10 T. Liu, M. Wang, Z. Shi, H. Cui, W. Dong, J. Chen, B. Åkermark and L. Sun, *Chem. Eur. J.*, 2004, **10**, 4474-4479.
- 11 S. Ott, M. Kritikos, B. Åkermark, L. Sun and R. Lomoth, Angew. Chem., Int. Ed., 2004, 43, 1006–1009.
- 12 X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and M. Y. Darensbourg, J. Am. Chem. Soc., 2001, 123, 9710–9711.
- 13 X. Zhao, I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez, C. Chiang and M. Y. Darensbourg, *Inorg. Chem.*, 2002, 41, 3917–3928.
- 14 X. Zhao, C. Chiang, M. L. Miller, M. V. Rampersad and M. Y. Darensbourg, J. Am. Chem. Soc., 2003, 125, 518–524.
- 15 F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Bénard and M. Rohmer, *Inorg. Chem.*, 2002, 41, 6573–6582.
- 16 J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Bénard and M. Rohmer, Angew. Chem., Int. Ed., 2001, 40, 1768–1771.
- 17 P. Das, J. Capon, F. Gloaguen, F. Y. Pétillon, P. Schollhammer and J. Talarmin, *Inorg. Chem.*, 2004, 43, 8203–8205.
- 18 Details of the synthesis, characterization and crystallographic data for 1 and 1(NH) are provided as Electronic Supporting Information (ESI).
- 19 K. S. Mohamed and D. K. Padma, Spectrochim. Acta, 1985, 41A, 725–728.
- 20 S. Ott, M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Åkermark, L. Hammarström and L. Sun, *Inorg. Chem.*, 2004, 43, 4683–4692.
- 21 S. Ott, R. Lomoth, B. Åkermark and L. Sun, Proceedings of the 13th International Congress on Photosynthesis: Fundamental Aspects to Global Perspectives, 2005, in press.