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Two diastereoisomers of tetranuclear cyclometallated iridium

complexes, either having an inner core of HEXOL-type

[Ir(IrCl2)3]
6+ unit and a surface of six chiral, didentate,

cyclometallated ligands, are stereoselectively synthesized from

an enantiopure pinenopyridine derivative.

The motif of an octahedral coordination center surrounded by

three didentate ‘‘ligands’’, which constitute themselves octahedral

coordination entities (HEXOL-type), has been of interest since the

classical work of Alfred Werner,1 mainly due to the inherently

chiral nature of such structures.2 In the present communication we

describe tetranuclear iridium(III) complexes of the HEXOL-type,

which have some remarkable structural features.

The reaction of iridium trichloride hydrate with enantiopure

2-phenyl-4,5-pinenopyridine derivative (2)-HLI,3 in a refluxing

mixture of 2-ethoxyethanol and water, leads to the formation of a

yellow precipitate (Scheme 1). Flash chromatography on silica

column gives two diastereoisomers 1 and 2.{ Crystals of 1 and 2

were obtained from CH2Cl2/n-hexane and CH3COOC2H5/diethyl

ether, respectively. X-Ray crystallography4,5 revealed the forma-

tion of the HEXOL-type tetranuclear iridium complexes, as shown

in Fig. 2.

The inner core of either molecule is a HEXOL-type [Ir(IrCl2)3]
6+

tetranuclear unit, which by itself has D3-symmetry. The ‘‘surface’’

of these coordination species is formed by six chiral, didentate,

cyclometallated ligands, which results in uncharged molecular

complexes. These complexes are highly soluble in CH2Cl2,

CH3COOC2H5 and many other low polar organic solvents due

to the nearly complete coverage of the molecular surface by the

phenyl-pinenopyridine groups.

Of particular interest is the stereochemistry of these tetranuclear

species. Each of the three peripheral iridium atoms, are bound to

two C, N-coordinating phenyl-pinenopyridine ligands, adopting a

N,N-trans, C,C-cis arrangement. Thus, all the four iridium atoms

can have either D-, or L-configuration and there are eight possible

stereoisomers of the tetranuclear HEXOL-type complex

[Ir(IrCl2(2)–LI
2)3]. Four kinds of D3-symmetric species will

occur when all the three peripheral iridium atoms have the

same configuration (Scheme 2, I), while another four kinds of

C2-symmetric species can be formed when one of the three

peripheral iridium atoms has an opposite configuration and breaks

the D3-symmetry (Scheme 2, II). Using enantiopure organic

ligands, the stereoselectivity of the formation of such complexes

can be investigated.

An NMR investigation of all products formed in Scheme 1

revealed that only two diastereoisomers, were formed and the ratio

of 1 to 2 was determined to be 5 : 3. Fig. 3 illustrates the aromatic

region of the 1H NMR spectra of complexes 1 and 2. These

spectra, as well as the 13C NMR spectra, show, in each case, the

presence of three sets of ligands. Therefore, both complexes are C2-

symmetric species, according to the occurrence of three types of

magnetically non-equivalent ligands LI, LI9 and LI0 in C2-

symmetric configuration (scheme 2, II). None of the highest

possible D3-symmetric molecules is formed, since in this case, all

six ligands would be magnetically equivalent.

Indeed, a close inspection of the X-ray structures in Fig. 2 shows

that C2-symmetry is present and in both cases, the central iridium

atoms show D-configuration. In complexes 1 and 2, the three
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Scheme 1 Synthesis of the complexes and their numbering scheme for

NMR.

Fig. 1 CD spectra of complexes 1 (a) and 2 (b) (RT, in CH2Cl2).
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peripheral iridium atoms, Ir2, Ir3 and Ir4, have D-, L-, L- and D-,

L-, D-configurations, respectively. Thus, the products obtained

from the reaction of ligand (2)-HLI are stereoisomers

D-Ir(D-IrCl2({C,C-cis-N,N-trans}(2)-LI)2)( L-IrCl2({C,C-cis-N,N-

trans}(2)-LI)2)2, 1 (Scheme 2, IIb), and D-Ir(D-IrCl2({C,C-cis-

N,N-trans}(2)-LI)2)2(L-IrCl2({C,C-cis-N,N-trans}(2)-LI)2), 2

(Scheme 2, IIa), respectively.

A related ligand, (2)-HLII,6 (Scheme 1) yielded analogous

complexes 3 and 4. The ratio of the two isomers is somewhat

different in this case (1 : 5).

Thus, stereoselectivity is complete as far as the configuration of

the central iridium is concerned. It appears only in the

D-configuration, using the (2)-HLI, II ligands. The occurrence of

mixed configurations, D-, L-, L-, and D-, L-, D-, respectively, of the

peripheral iridium atoms is rather surprising. Under the same

conditions, the reaction of iridium trichloride hydrate with

unsubstituted phenylpyridine (HPhPy) yields a Cl-bridged dinu-

clear cyclometallated compound [Ir(PhPy)2Cl]2.
7 Thus, the forma-

tion of the tetranuclear species with phenyl pinenopyridine

derivatives is caused by the pinene group annellated to the

pyridine ring.

Notes and references

{ Iridium trichloride hydrate (0.3 mmol) was combined with HLI, dissolved
in a mixture of 2-ethoxyethanol (15 mL) and water (5 mL), and heated at
110 uC for 24 h. The solution was cooled to RT. The yellow precipitate
formed was collected and washed with ethanol to give a mixture of 1 and 2
in the ratio of 5 : 3. The mixture was then separated by flash
chromatography on silica column using CH2Cl2/n-hexane 1 : 1 as eluent
to yield two diastereoisomers 1 (70 mg, 38%) and 2 (42 mg, 23%). The
relative Rf value of complexes 1 and 2 are 0.52 and 0.40, respectively. Fig. 1
displays the CD spectra of complexes 1 and 2.
§ CCDC 269178. See http://dx.doi.org/10.1039/b507769a for crystallo-
graphic data in CIF or other electronic format.
" CCDC 269179. See http://dx.doi.org/10.1039/b507769a for crystallo-
graphic data in CIF or other electronic format.
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(b) (500 MHz, CDCl3(*), RT).
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