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o-(1,6-Enynyl)benzaldehydes underwent a novel mode of

cycloaddition using Rh(I)-precatalyst, via [3 + 2] cycloaddition

of presumed dipolar carbonyl ylide intermediate generated by

Rh-catalyst and the utility of this mechanistically intriguing

enyne cyclization can be found in a number of polycyclic

natural product skeletons.

Transition metal-catalyzed cyclizations of enynes and related

p-precursors has been an area of intense study in past decades, and

has emerged as one of the most expeditious and versatile routes for

construction of carbo- and heterocyclic compounds of medicinal

and materials interest.1 In an important subset of these reaction,

i.e. [l + m + n] cycloaddition, Rh(I)2 complex has played a pivotal

role in generating various modes of cyclization, such as [2 + 2 + 1],

[5 + 2 + 1], and [4 + 2 + 2], etc.3 We now report our discovery of

novel Rh(I)-catalyzed cycloaddition among appropriately tethered

alkyne, alkene, and aldehyde functionalities (Scheme 1).

In connection with our interest in the metal-catalyzed cyclization

of enynes,4 we were originally intrigued by the possibility of

intramolecular Pauson–Khand-type transfer carbonylation of

o-(1,6-enynyl)benzaldehyde 1c. In this vein, we treated 1c with

Rh(PPh3)3Cl in xylene at 120 uC for 6 h (entry 1, Table 1).

Surprisingly, we found the unusual polycyclic compound 2c

formed in 34% yield instead of the expected Pauson–Khand-type

product, along with decomposed unidentified products. The

structural identification and stereochemical assignment of 2c

followed from 1H, 13C, COSY, HSQC, and 1-D NOE NMR

experiments and finally from HRMS.5,6 From the screening of

catalyst precursors and ligand, it was found that combination of

[Rh(COD)Cl]2 and dppp gave the highest yield of 2c (entries 1–3),

while use of cationic Rh(I) complex gave inferior conversion

(entry 5). It is noteworthy that cyclization proceeds more

effectively in the presence of a small amount of water. For

example, treatment of 1c with [Rh(COD)Cl]2 (5 mol %) and dppp

(10%) in refluxing aqueous xylene (containing 5 wt% H2O) gave 2c

in 86% yield, while the same reaction in dry xylene (dried over Na)

led to extensive decomposition of the starting material (entries 3, 4,

and 7, Table 1). Among commercially available Rh-complexes

tested, 5 mol % of [Rh(COD)Cl]2 along with dppp (10%) gave the

highest conversion in 5% aqueous xylene (86% yield, entry 7,

Table 1).

ð1Þ

It is also interesting to note that Padwa et al. and Feldman et al.

independently reported the formation of the polyoxacyclic skeleton

of 2c from a-diazocarbonyl compound 3 via intermediacy of

carbonyl ylide generated under Rh(II)-catalysis, and from photo-

chemical reaction of a,b-epoxyketone 4 (eqn (2) and (3)),

respectively.7 The present reaction has apparent advantages in

that (1) multiple bonds formed efficiently from readily available

starting material, leading to complex polyoxacyclic skeleton, and

(2) the reaction is highly atom-economical. Several natural

products can be projected to be generated from this methodology,

including barbatusol, pisiferin, faveline, and xochitlolone.8

ð2Þ

ð3Þ

In order to demonstrate the scope of present reaction, we

prepared various o-(enynyl)benzaldehydes 1a–g and tested these

substrates under our optimized conditions: [Rh(COD)Cl]2
(5 mol%), dppp (10%) in 5% aqueous xylene (Table 2). The

reaction is highly tolerant of the substitution pattern in alkene and

both terminal as well as internal alkenes 1c underwent efficient

cyclization (Table 2, entries 2 and 3) in satisfactory yields without

any isomerization. Heteroatoms enyne (Table 2, 1e–1f) can be well

accommodated in the present methodology (Table 2, entries 5–7).

Finally, 1,7-enyne substrates 1d and 1f substrates gave higher
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homologs 2d and 2f smoothly, albeit in slightly diminished yields

(Table 2, entries 4 and 6).

While detailed mechanism should await further study, we

suggest Scheme 2 as a working hypothesis. We postulated the

formation of 2 is initiated by activation of alkyne by Rh(I) species

to generate Rh-carbenoid carbonyl ylide (Scheme 2).9,10 Successive

tandem [3 + 2] cycloaddition with tethered alkene would lead to the

observed oxabicyclic product 2. Addition of water could occur at

any stage, regenerationg Rh(I) and molecular hydrogen.

Yamamoto et al. recently reported that similar substrates undergo

Au(III)-catalyzed [4 + 2] cycloaddition to give benzannulation

product.11 Presumably, fine reactivity control by putting gem-

disubstituent directs the reaction manifold into [3 + 2] cycloaddi-

tion instead of [4 + 2] pathway.

In summary, we have demonstrated a highly efficient, atom-

economical route to various polycyclic compounds from

o-(enynyl)benzaldehydes. Further study aimed at elucidating this

novel and mechanistically intriguing mode of cyclization is

currently underway. We are also pursuing the applications of this

methodology for the construction of various polycyclic natural

product skeletons.

ð4Þ

Table 1 Reactions of 1c with various metal complexes under different solvents

Entry Catalysta Conditions Yieldb (%)

1 Rh(PPh3)3Cl xylene (commercial), 120 uC, 6 h 34c

2 [Rh(CO)2Cl]2 xylene (commercial), 120 uC, 0.5 h 45c

3 [Rh(COD)Cl]2/dppp xylene (commercial), 120 uC, 12 h 81
4 [Rh(COD)Cl]2/dppp xylene (dired over Na), 120 uC, 48 h decomposition
5 [Rh(COD)Cl]2/dppp/AgOTf 5% aq. xylene, 120 uC, 6 h 63c

6 Pd(PPh3)4 5% aq. xylene, 120 uC, 24 No reaction
7 [Rh(COD)Cl]2,/dppp aq. 5% aq. xylene, 110 uC, 12h 86
a At 5 mol% Rh. 10% of ligand (if any). b Isolated yields. c The rest of material was decomposed product.

Table 2 Reactions of various o-enynebenzaldehydes 1a–g

Entry Substrate (1) Temp (uC)/Time (h) Product 2 Yield (%)

1 100, 12 2a 83

2 100, 12 2b 76

3 100, 12 2c 86

4 110, 12 2d 68

5 80, 8 2e 87

6 80, 8 2f 81

Scheme 2 Proposed mechanism of Rh(I)-catalyzed polycyclization.
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