Diversity in magnetic properties of 3D isomorphous networks of Co(II) and Mn(II) constructed by napthalene-1,4-dicarboxylate[†]

Tapas Kumar Maji, Wakako Kaneko, Masaaki Ohba and Susumu Kitagawa*

Received (in Cambridge, UK) 7th June 2005, Accepted 28th July 2005 First published as an Advance Article on the web 19th August 2005 DOI: 10.1039/b507953e

Two novel 3D isomorphous organic–inorganic hybrid frameworks, $[M(1,4-napdc)]_n$ (M = Co(II), 1 and Mn(II), 2; 1,4napdcH₂ = napthalene-1,4-dicarboxylic acid) have been hydrothermally synthesized and structurally characterized, and the magnetic results exhibit metamagnetic behaviour ($T_C = 5.5$ K) for 1, and a weak antiferromagnetic interaction for 2, which are structurally correlated.

The chemistry of multifunctional metal-organic hybrid frameworks is recently one of the most productive areas of chemical research.1 Currently a challenging target is the design and synthesis of molecule based magnetic materials with the strategic co-existance of multiple properties, like spin-crossover, optical properties and porous functionality.² In order to achieve such functionalities, one of the approaches is to link 0D clusters or 1D (M–O–M) inorganic chains having high magnetic anisotropy by using a polycarboxylate ligand to form a 3D robust framework.³ Recently, multidimensional transition metal carboxylates (aromatic as well as aliphatic) having metal-oxygen connectivity with ferromagnetic or ferrimagnetic behavior with a high $T_{\rm C}$ and coercive field have been reported.⁴ But accounts of homometallic metamagnets with 3D magnetic ordering are still few in the literature.⁵ With the aim of studying the influence of organic molecules on the intra- and interlayer structural and magnetic properties in different metal systems, we decided to pursue the grafting of the planar naphthalene-1,4-dicarboxylate anion having a conjugated π -electron system and constitutional stiffness that has not, to our knowledge, been well studied as a linker to construct a functional coordination framework.⁶ In this communication we report two, isomorphous 3D network of Co(II) and Mn(II) using naphthalene-1,4-dicarboxylic acid (1,4-napdcH₂) as a building block (Scheme 1). Variable temperature magnetic measurements of $[Co(1,4-napdc)]_n$ (1), exhibit intra-chain (Co–O–Co) ferromagnetic

Scheme 1 Binding mode of 1,4-napdc²⁻ in 1 and 2.

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishigyo-ku, Kyoto 615-8510, Japan. E-mail: kitagawa@sbchem.kyoto-u.ac.jp; Fax: +81 75-383-2732

† Electronic supplementary information (ESI) available: TG analysis of 1, views of the coordination in 2 and a plot of M vs. H at 2 K for 2. See http://dx.doi.org/10.1039/b507953e

interactions and inter-chain (Co–1,4-napdc–Co) antiferromagnetic interactions and overall metamagnetic behaviour with 3D magnetic ordering ($T_{\rm C} = 5.5$ K), whereas [Mn(1,4-napdc)]_n (2), shows antiferromagnetic interactions along the Mn–O–Mn and Mn–1,4-napdc–Mn pathways.

Reaction of CoCl₂·6H₂O (1.0 mmol) with 1,4-napdcH₂ (1.0 mmol) and KOH (2.0 mmol) in water (10-12 ml) at 170 °C for 120 h resulted in deep violet colored needle-like crystals of 1 in 70% yield and under the same conditions colorless needle-like crystals of 2 were obtained in 40% yield. Recent research has revealed that the hydro(solvo)thermal reaction is a promising technique in preparing metal complexes (or metal-organic frameworks) with novel structures and special properties, which are difficult to obtain by routine synthetic methods.⁷ Elemental analysis shows the formulation of $[M(1,4-napdc)]_n$ and IR spectra reveal that broad and intense bands appear at ~ 1540 cm⁻¹ $[v_{as}(COO)]$ and 1356 cm⁻¹ $[v_{s}(COO)]$, corroborating that the all the oxygen atoms of the carboxylate group are involved in bridging in both cases. The thermogravimetric analysis shows no weight loss from room temperature to ~ 400 °C, indicating that both the frameworks are very stable (Fig. SI(1)[†]).

X-Ray structural analysis reveals that both the frameworks crystallize in a monoclinic crystal system and the asymmetric unit comprises one metal ion and one 1,4-napdc²⁻ ligand, and therefore there is only one metal environment.[‡] In the case of 1 each Co(II) is coordinated in a distorted octahedral geometry with the O₆ donor set coming from six different 1,4-napdc²⁻ ligands (Fig. 1a). Each 1,4-napdc²⁻ unit binds two Co(II) ions through one carboxylate in a syn-syn fashion and another Co(II) through a μ^2 -carboxylate bridge, forming a one dimensional inorganic chain of $[Co-\mu-O_2]_n$ along the crystallographic *a*-axis (Fig. 1a); thus each 1,4-napdc²⁻ ligand binds six different Co(II) centers using two carboxylate moieties. Each inorganic chain is connected to four other different chains through 1,4-napdc²⁻ ligands forming a 3D network (Fig. 1b). The four oxygen atoms O1_d, O2_a, O3 and O4_d (a = -1 + x, y, z; d = 1 - x, 1 - y, 1 - z) from four different 1,4napdc²⁻ ligands form the equatorial plane around each Co(II) ion and the axial positions are occupied by another two oxygen atoms, O1 and O4_a, from two different ligands. The deviation of each Co(II) center from the mean plane defined by the four oxygen atoms is 0.0026(7) Å and the maximum deviation of any equatorial atom (O1 d) is 0.2169(7) Å. The dihedral angle between the benzene rings of the 1,4-napdc²⁻ ligand is 6.47(6)° and the Co-O bond lengths are in the range 2.026(1)-2.145(2) Å. The degree of distortion from ideal octahedral geometry is reflected in the cisoid angles, $80.30(6)-109.14(7)^{\circ}$ and transoid angles 161.43(6)–176.32(4)°. The angle in the μ^2 -carboxylate bridge part,

Fig. 1 (a) View of the coordination environment of Co(II) and the building unit $[Co-\mu-O_2]_n$ of the inorganic chain in 1; (b) the overall 3D coordination network of 1.

Co1–O1–Co1_d is 85.58(6)°. The Co···Co separation in the chain through the μ^2 -carboxylate bridge is very short and is about 2.91 Å, while through the 1,4-napdc^{2–} ligand, Co–1,4-napdc–Co, it is 11.12 Å. The noncovalent π - π interactions between the 1,4-napdc^{2–} ligands stabilize the overall conformation and topology of the network.

The framework **2** is isomorphous with **1**, having a 3D network with a 1D inorganic chain of $[Mn-\mu-O_2]_n$ (Fig. SI(2)†). The degree of distortion from the ideal octahedral geometry of Mn(II) is reflected in the cisoid angles, 77.75(6)–113.98(8)° and transoid angles 157.59(6)–173.97(6)°. The dihedral angle between the two benzene rings of the 1,4-napdc²⁻ ligand is 5.63(9)°. The Mn–O distances are in the range 2.110(2)–2.260(2) Å and the Mn1–O1–Mn1_d angle is 87.46(8)°. The Mn···Mn separations between the

Fig. 2 (a) Temperature dependent χ_M versus T plots for 1 at two different applied fields (H = 500 and 200 G); (b) temperature dependent $\chi_M T$ versus T plots for 2 (H = 500 G).

 $\mu^2\text{-carboxylate bridge and in the Mn–1,4-napdc–Mn part are 3.07 Å and 11.21 Å, which are slightly higher compared to framework 1.$

Temperature dependent (300–1.8 K) magnetic measurements were carried out for both compounds using powder samples. Fig. 2a shows χ_M versus T plots of 1 at 200 and 500 G. The value of $\chi_{\rm M}$ at 300 K is 1.06 \times 10² cm³ mol⁻¹ (5.09 $\mu_{\rm B}$), which agrees with the expected spin-only value for an isolated high-spin Co(II) ion including an orbital contribution to ${}^{4}T_{1g}$ (4.5–5.2 μ_{B}). Upon cooling in a field of 200 G, the $\chi_{\rm M}$ value gradually increases up to a maximum value of 11.1 cm³ mol⁻¹ (22.2 $\mu_{\rm B}$) at 5.5 K and then suddenly decreases to 1.80 cm³ mol⁻¹ (5.11 $\mu_{\rm B}$) at 1.8 K. The magnetic behavior above 5.5 K and the maximum χ_M value suggests a ferromagnetic coupling between Co(II) ions within the chain. The $1/\chi_{\rm M}$ versus T plot in the range 70–300 K obeys the Curie-Weiss law and gives a positive Weiss constant of +24.7 K, which also supports the ferromagnetic interaction between Co(II) ions. The drop in $\chi_{\rm M}$ values below 5.5 K indicates the operation of an antiferromagnetic interchain interaction and an overall metamagnetic nature.⁸ The ac magnetic susceptibilities (Fig. 3) confirm the onset of magnetic ordering with a sharp peak in the

Fig. 3 The temperature dependence of the in-phase (χ_M') and the out-ofphase (χ_M'') ac magnetic susceptibilities for 1.

Fig. 4 Magnetic hysteresis loop at 2 K for **1** (inset: details in a low field showing a sigmoidal curve corresponding metamagnetic behaviour).

in-phase ($\chi_{\rm M}'$) and out-of-phase components ($\chi_{\rm M}''$) at 5.5 K, which suggest 3D magnetic ordering with $T_{\rm C} = 5.5$ K. The ac magnetic behavior does not depend on the frequency between 1 and 1000 Hz. The magnetic hysteresis loop (Fig. 4 (inset)) shows a sigmoidal nature with an inflection point around 250 G, a saturation magnetization value of 3.32 $\mu_{\rm B}$ at 5 T and a slight remnant magnetization (Fig. 4).⁸ The first magnetization curve does not correspond to the second one (Fig. 4 (inset)). The inflection point means a critical magnetic field for spin flipping and this behavior suggests the metamagnetic nature of framework 1. Actually, the drop of the $\chi_{\rm M}$ value below 5.5 K is not observed in the $\chi_{\rm M}$ versus T plot under 500 G (Fig. 2a), which suggests the weak antiferromagnetic interchain interaction is overcome by the external magnetic field.

In the case of **2**, the $\gamma_{\rm M}T$ value at 300 K is 3.06 cm³ mol⁻¹ K (4.95 $\mu_{\rm B}$) and then simply decreases down to 0.24 cm³ mol⁻¹ K (1.39 μ_B) at 1.8 K (Fig. 2b). This behaviour is characteristic of an antiferromagnetic interaction between the Mn(II) centers. The anomaly around 50 K is attributed to effect of oxygen. The residual oxygen was not completely removed by repeated evacuation. The *M* versus *H* curve of **2** (Fig. SI(3)^{\dagger}) with a magnetization value of 0.256 $\mu_{\rm B}$ at 5 T also suggests an antiferromagnetic interaction between Mn(II) ions through the μ^2 -carboxylate bridge. In spite of having the same bridging structure, the dominant magnetic interaction nature is opposite between 1 and 2. Here in the frameworks, 1 and 2, all metal centers are in an octahedral environment. The magnetic interaction between $d\sigma$ (e_g) unpaired electrons should be ferromagnetic due to accidental orthogonality of the M-O-M bridging angle (85.58° for 1 and 87.46° for 2). However, the interaction of Co(II) usually stronger than that of Mn(II) because of the shorter M-O bond distances. In addition, Mn(II) (d⁵, high spin) has more unpaired electrons in the $d\pi$ (t_{2g}) orbitals, which give an antiferromagnetic contribution, and an antiferromagnetic interchain interaction also operates. Accordingly, weak antiferromagnetic interactions operate in 2 as a sum of such magnetic contributions.

In summary, we have synthesized two isomorphous 3D coordination networks of Co(II) and Mn(II) by hydrothermal

techniques using 1,4-napdc²⁻ as a bridging ligand. The framework 1 shows overall metamagnetic behaviour ($T_{\rm C} = 5.5$ K) with strong ferromagnetic intrachain interactions and antiferromagnetic interchain interactions. Whereas framework 2, having Mn(II) in a d⁵ high spin configuration, shows simple antiferromagnetic interactions. So, this novel result shows the diversity of magnetic properties in two isomorphous frameworks by a simple change of the metal ion.

This work was supported by a Grant-In-Aid for Science Research in a Priority Area "Chemistry of Coordination Space" (No. 464) from the Ministry of Education, Science, Sports, and Culture, Japan. Dr T. K. Maji is grateful to JSPS for a postdoctoral fellowship.

Notes and references

‡ Crystal and structure refinement parameters for 1 and 2. Framework 1: $C_{12}H_6CoO_4$, Mw = 273.11, monoclinic, space group $P2_1/n$ (No. 14), $a_{2}^{-2} - 4.728(5)$ Å, b = 14.84(2) Å, c = 13.48(3) Å, $\beta_{F} = 90.46(6)^{\circ}$, V = 946.0(2) Å³, Z = 4, $D_{c} = 1.917$ g cm⁻³, $\mu(Mo_{K\alpha}) = 1.811$ mm⁻¹, T = 223 K, $\lambda(Mo_{K\alpha}) = 0.71069$ Å, $\theta_{max} = 27.5^{\circ}$. Total data = 9938, unique data = 2128, $R_{\text{int}} = 0.029$, observed data $[I > 2\sigma(I)] = 1661$, R = 0.0253, $wR_2 = 0.0417$, GOF = 1.08. Framework **2**: C₁₂H₆MnO₄, Mw = 269.11, monoclinic, space group $P2_1/n$ (No. 14), a = 4.892(9) Å, b = 14.99(2) Å, c = 13.37(4) Å; $\beta = 91.82(6)^\circ$; V = 980(3) Å³, Z = 4; $D_c = 1.824$ g cm⁻³; $\mu(Mo_{K\alpha}) = 1.343 \text{ mm}^{-1}, T = 233 \text{ K}; \lambda(Mo_{K\alpha}) = 0.71069 \text{ Å}, \theta_{max} = 27.5^{\circ}.$ Total data = 8752, unique data = 2221, $R_{int} = 0.039$, observed data [I > $2\sigma(I)$] = 1514; R = 0.0293, $wR_2 = 0.0395$, GOF = 0.89. Data were collected on a Rigaku Mercury CCD diffractometer with graphite monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71069$ Å). Both the structures were solved by direct methods by using SIR97 program and expanded by using Fourier techniques. For both compounds, the non-hydrogen atoms were placed in the ideal positions. CCDC 274483 for 1 and 274484 for 2. See http://dx.doi.org/10.1039/b507953e for crystallographic data in CIF or other electronic format.

- (a) S. Kitagawa, R. Kitaura and S.-I. Noro, *Angew. Chem., Int. Ed.*, 2004,
 43, 2334; (b) B. Moulton and M. J. Zaworotko, *Chem. Rev.*, 2001, 101,
 1629; (c) C. Janiak, *Dalton Trans.*, 2003, 2781.
- 2 (a) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray and J. D. Cashion, *Science*, 2000, **298**, 1762; (b) K. Inoue, K. Kikuchi, M. Ohba and H. Ōkawa, *Angew. Chem., Int. Ed.*, 2003, **42**, 4810; (c) N. Guillou, C. Livage, M. Drillon and G. Férey, *Angew. Chem., Int. Ed.*, 2003, **42**, 5314.
- (a) P. M. Forster and A. K. Cheetham, *Angew. Chem., Int. Ed.*, 2002, 41, 457; (b) C. Livage, C. Egger and G. Férey, *Chem. Mater.*, 1999, 11, 1546; (c) P. M. Forster, A. R. Burbank, C. Livage, G. Férey and A. K. Cheetham, *Chem. Commun.*, 2004, 368.
- 4 (a) M.-L. Tong, S. Kitagawa, H.-C. Chang and M. Ohba, *Chem. Commun.*, 2004, 418; (b) M. Kurmoo, H. Kumagai, S. M. Hughes and C. J. Kepert, *Inorg. Chem.*, 2003, 42, 6709; (c) S. Konar, P. S. Mukherjee, E. Zangrando, F. Lloret and N. Ray Chaudhuri, *Angew. Chem., Int. Ed.*, 2002, 41, 1561.
- 5 (a) A. Rujiwatra, C. J. Kepert, J. B. Claridge, M. J. Rosseinsky, H. Kumagai and M. Kurmoo, *J. Am. Chem. Soc.*, 2001, **123**, 10584; (b) Z.-L. Huang, M. Drillon, N. Masciocchi, A. Sironi, J.-T. Zhao, P. Rabu and P. Panissod, *Chem. Mater.*, 2000, **12**, 2805; (c) X. Hao, Y. Wei and S. Zhang, *Chem. Commun.*, 2000, 2271; (d) M.-H. Zeng, W.-X. Zhang, X.-Z. Sun and X.-M. Chen, *Angew. Chem., Int. Ed.*, 2005, **44**, 3079.
- 6 (a) D. T. Vodak, M. E. Braun, J. Kim, M. Eddaoudi and O. M. Yaghi, *Chem. Commun.*, 2001, 2534; (b) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, *Science*, 2002, 295, 469; (c) X.-J. Zheng, L.-P. Jin, S. Gao and S.-Z. Lu, *Inorg. Chem. Commun.*, 2005, 8, 72.
- 7 (a) X.-M. Zhang, Coord. Chem. Rev., 2005, 249, 1201; (b) R. H. Laye and E. J. L. McInnes, Eur. J. Inorg. Chem., 2004, 2811.
- 8 (a) M. Ohba, H. Ōkawa, N. Fukita and Y. Hashimoto, J. Am. Chem. Soc., 1997, 119, 1011; (b) M. Ohba and H. Ōkawa, Coord. Chem. Rev., 2000, 198, 313.