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A tandem azide formation/intramolecular cycloaddition/

triazoline fragmentation/Michael addition, which results in a

non-symmetrical quinolizidine from an acyclic symmetrical

precursor, is presented.

The strategies of two-directional synthesis1 and tandem reactions2

both offer the potential to substantially reduce the number of

operations required to synthesise complex molecules. As part of an

on-going programme studying the potential of combining two-

directional synthesis and tandem reactions,3 we herein disclose a

remarkable self-desymmetrising cascade reaction.

Two-directional synthesis intrinsically generates symmetrical

products. By using two-directional synthesis as a means of forming

simple symmetrical functionalised chains, then using a tandem

reaction to ‘‘fold’’ these chains, creating rings and stereocentres, we

have the potential to form complex polycyclic compounds in just a

few steps. Our recent syntheses of perhydrohistrionicotoxin4 and

hippodamine5 exemplify this approach to the synthesis of complex

alkaloids.

During an investigation related to our work on hippodamine,

we wished to synthesise symmetrical azide 3, such that we could

investigate a Staudinger-type azide reduction/tandem Michael

cyclisation. In order to access azide 3, we started with the

symmetrical ketone 1 (Scheme 1), which is available in 4 steps from

1,3-dithiane, or in 5 steps from ethyl formate.6 Reduction of the

ketone with sodium borohydride followed by conversion of the

resulting pseudo-C2 symmetric alcohol to mesylate 2 proceeded

uneventfully in 96% yield over two steps. Reaction of mesylate 2

with sodium azide in DMF at 50 uC was expected to result in the

formation of azide 3. TLC showed one clear product, with a

further amount of baseline material, which we considered was

possibly due to azide overaddition/decomposition. However, upon

inspection of the crude 1H NMR, it was quickly obvious that

something far more complicated than azide 3 had been formed in

the reaction pot. Indeed, after purification by column chromato-

graphy, it was found that the sole isolable product of the reaction

was quinolizidine derivative 5 (52%). Key observations which led

us to assign the structure of bicyclic diazo compound 5 were the

obvious asymmetry present in the 1H and 13C spectra (including

two ester carbonyl peaks in the 13C NMR spectrum), and the

characteristic diazo stretch in the IR at 2150 cm21. High

resolution mass-spectral data confirmed the molecular mass of

338.2075 (M + H). However, in order to further confirm the

stereochemistry of our product, we decided it would be best to

make a crystalline derivative suitable for X-ray structure
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Scheme 1 Two-directional synthesis and tandem reaction of azide 3.
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determination. Thus upon exposure to standard hydrogenation

conditions (10% Pd/C, 1 atm hydrogen), diazo compound 5 was

quantitatively converted to the crystalline hydrazone 6, whose

X-ray structure7 is shown in Fig. 1.

Study of the X-ray structure of 6, combined with the isolation of

a small amount of triazoline 4 from the reaction mixture when

stopped early, has allowed us to postulate a mechanism for this

tandem reaction sequence, which is presented in Scheme 2. Thus,

[3 + 2] cycloaddition of azide 3 with one of the enoate

functionalities results in the thermodynamically most favoured

cycloadduct 4. 1,4-Prototopic shift within the triazoline of 4,

followed by fragmentation to yield diazo 2,6-disubstituted

piperidine 7 and subsequent Michael-type ring closure is the most

satisfactory mechanism. Although the triazoline fragmentation8 to

a piperidine is precedented under basic conditions,9 lending weight

to this mechanistic proposal, we were unable to detect quantities of

the intermediate piperidine 7. However, we were able to detect

these types of piperidine intermediate in our hippodamine

synthesis,5 which used a similar Michael-type ring closure to a

4,6-disubstituted quinolizidine. It could also be envisaged that the

formation of 5 from 4 could be achieved through a concerted ene-

type mechanism, with the tertiary nitrogen and the proton a to the

ester on the triazoline being delivered to either end of the electron

deficient alkene, with concomitant triazoline fragmentation.

In conclusion, the power of combining two-directional

synthesis and tandem reactions has provided a short and efficient

entry into a non-symmetrical 4,6-disubstituted quinolizidine

skeleton. Further studies into the use of the tandem azide

formation/[3 + 2]/fragmentation reaction are on-going and our

results will be reported in due course.
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Fig. 1 X-ray structure of hydrazone 6, formed by hydrogenation of 5.

Scheme 2 Proposed mechanism for the formation of 5.
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