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A complex Diels–Alder reaction between a semi-cyclic diene

with allylic silyloxy substituents and a bromo enone presented

an unusual diastereoselectivity: attack of the diene occured on

its more hindered face, and this reversal of selectivity was

shown to be induced by the presence of a bromo substituent in

the dienophile.

In the course of our studies toward the synthesis of FR182877, we

explored a route involving a complex intermolecular Diels–Alder

reaction to construct the ABC tricycle. This compound, isolated in

1998 from Streptomyces sp. No. 9885 by Sato and coworkers,1 has

a mode of action similar to that of taxol, which makes it a

potential antitumor drug.2 Total syntheses of (+)-FR182877 and

the natural (2)-enantiomer have been reported by Sorensen et al.3

and Evans and Starr,4 respectively, and synthetic approaches have

been published by several groups.5

The retrosynthesis we envisioned for the ABC tricycle is shown

in Scheme 1. Compound 1 would be formed by an olefin

migration from 2. The latter would be synthesized from diene 4

and dienophile 5 by a Diels–Alder/retro Diels–Alder sequence via

adduct 3. A similar reaction has been reported by Takano et al. for

the synthesis of estrone:6 in the presence of a Lewis acid, the exo

product is obtained exclusively, which corresponds to the desired

stereochemistry for compound 3.

We first studied the key Diels–Alder coupling between racemic

enone (¡)-57 and (¡)-6, a racemic model of diene 4 (X 5 H,

R 5 TBS) lacking the methyl substituent between the two

protected alcohol functions (Scheme 2).{ No reaction was

observed under thermal conditions, and numerous Lewis acids

were tested without any success.§

After extensive experimentation, it was found necessary to

promote the reactivity of both diene and dienophile in order to

obtain good conversions in the Diels–Alder reaction. E-Diene (¡)-

7 (X 5 OMe) gave the best results, and enone (¡)-8,8

which possesses an a-bromo substituent,9 was chosen because it

was easily accessible from enone (¡)-5. When these two

partners were heated in toluene at reflux for 40 h, the reaction

proceeded in high yield (Scheme 3), with total regioselectivity

and diastereoselectivity. Careful purification of the starting

materials and exclusion of oxygen during the reaction must be

effected to prevent aromatization of the newly formed six-

membered ring. Use of Et2AlCl at 278 uC gave the same

product, but in only 27% yield (52% based on recovered

enone (¡)-8).
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Scheme 1 Retrosynthesis of the ABC tricycle of FR182877.

Scheme 2 First attempts of Diels–Alder reactions.

Scheme 3 Diels–Alder reaction between activated substrates.
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The stereochemistry of (¡)-9 was determined by X-ray analysis

of a crystalline derivative, diol (¡)-9a (Fig. 1)," obtained by

treatment with HF in acetonitrile. The Diels–Alder reaction

proceeds via an endo transition state exclusively, and there is a very

strong facial bias for both partners. Enone (¡)-8 reacted from the

bridge-head side, which was expected, but attack of diene (¡)-7

occurred syn to the OTBS substituents: diene (¡)-7 was thus

approached on its more hindered side. When the alcohol

substituents were protected as TIPS (triisopropylsilyl) ethers, the

same diasteroselectivity was observed, which is even more

surprising in view of the bulkiness of these protecting groups.

This totally unexpected facial selectivity has no precedent in the

literature.10 To our knowledge, the only case of syn attack of such

semi-cyclic dienes in Diels–Alder reactions was observed by

Overman et al. for an allylic alcohol substituent (Scheme 4,

R 5 H), where the facial selectivity can be explained by a

hydrogen bond between the diene and dienophile in the transition

state.11 However, when the alcohol is protected as a TBS ether

(Scheme 4, R 5 TBS), the expected product anti (¡)-11 is

obtained exclusively.

In order to explain the reversal of facial selectivity of diene (¡)-

7, we first tried to assess the effect of the methoxy substituent of

the diene. Reaction of dienes (¡)-6 and (¡)-7 with

N-phenylmaleimide gave the expected anti adducts (Scheme 5).I
Both these dienes behaved according to Overman’s precedent,

indicating the lack of influence of the methoxy group alone.

We then reacted diene (¡)-7 with a simple dienophile,

a-bromocyclopentenone 14 (Scheme 6). The syn adduct (¡)-15

was produced exclusively.** Since enones (¡)-8 (Scheme 3) and 14

lead to the same facial selectivity in the Diels–Alder reaction with

(¡)-7, we can assume that the bridged structure does not

participate in this unusual selectivity. On the other hand, the

opposite stereochemistry of compound (¡)-13 (Scheme 5) versus

compound (¡)-15 (Scheme 6) seems to be due to the bromo

substituent.

In order to verify this assumption, compounds (¡)-6 and 14

were heated in toluene at reflux. The conversion was poor, but the

reaction very clean, giving two regioisomeric adducts (Scheme 7).

Fig. 1 Solid state structure of (¡)-9a.

Scheme 4 Overman’s precedents.

Scheme 5 Diels–Alder reactions with N-phenylmaleimide.

Scheme 6 Diels–Alder reaction of diene (¡)-7 with a simple bromo

enone.

Scheme 7 Diels–Alder reaction of diene (¡)-6 with a simple bromo

enone.
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The desired regioisomer (¡)-16 was obtained with mainly the syn

stereochemistry, but the other regioisomer resulted from the anti

attack.{{
Finally, diene (¡)-7 was reacted with N-phenylbromomaleimide

(Scheme 8). In this case, the reversal of selectivity is not total

(compare with the formation of (¡)-13, Scheme 5), but a

substantial amount of the syn diastereomer (30%) is formed,

proving once again the role of the bromo substituent in the

stereochemical course of this Diels–Alder reaction.

From the previous experiments, we can deduce that the bromo

substituent of the dienophile induces the reversal of the facial

selectivity of dienes (¡)-6 and (¡)-7. If this effect is due to an

electrostatic interaction in the Diels–Alder transition state between

this bromo substituent and the silicon atoms of one or both TBS

protecting groups, this interaction should be disrupted in a polar

solvent.{{ However, we could not verify this hypothesis since diene

(¡)-7 decomposes when heated in the presence of (¡)-8 in THF,

DMF or dioxane. Other protecting groups for the diol moiety, non

silicon-based, were also investigated: analogues of diene (¡)-7,

bearing two methyl or benzyl ethers, have been prepared.

Unfortunately, the Diels–Alder adducts resulting from reactions

of these compounds with (¡)-8 degraded very rapidly, so no

information could be gained from these additional experiments.

In summary, we have discovered an intriguing reversal of

selectivity in a Diels–Alder reaction between a semi-cyclic diene

bearing allylic silyloxy substituents and bromo enones. The

importance of the bromo substituent, which directs the attack of

the dienophile to the more hindered face of the diene, has been

proven. Further work to explain this directing effect is currently in

progress in our laboratory.
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b = 102.9000(10), c = 89.8000(10)u, U = 3098.8(4) Å3, Z = 4, dcalc =
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