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Stoichiometric or catalytic quantities of simple 2u amines

greatly increase the rate of H–Zn exchange between ZnPh2

and a range of relatively non-acidic substrates, allowing for

the convenient and direct preparation of a-functionalized

organozincs.

Functionalized organozincs are frequently used as C-nucleophiles

in the synthesis of complex organic molecules.1 Due to their low

basicities they tolerate a wide range of sensitive functional groups,

yet they react with many electrophiles and readily undergo

transmetalation reactions with transition-metal salts. Thus, they

are indispensable intermediates in many C–C bond-forming

reactions,2 particularly those mediated by Cu and Pd complexes.3

The preparation of functionalized organozincs is commonly

performed either by the direct insertion of activated Zn into

carbon–halogen bonds or by the transmetalation of organolithium

reagents with zinc halides.4 More recently, alkenylzinc and related

derivatives have been accessed by transmetalation of Zr- and

Pd-containing intermediates with Zn sources.5 Conspicuously, the

straightforward production of functionalized organozincs by

H–Zn exchange (i.e. deprotonation) is rarely used due to the

kinetic inertness of common organozincs (e.g. ZnEt2, ZnPh2). In

this communication, however, we report that stoichiometric or

catalytic quantities of 2u amines increase the rate of H–Zn

exchange between ZnPh2 and a range of relatively inert carbon

acids. By this method a-functionalized organozincs have been

conveniently prepared starting from simple amides, phosphonates,

and phosphine oxides. The amine-promoted H–Zn exchange

process involves the intermediacy of Zn amido species which are

competent for the deprotonation of the functionalized substrates.

The deprotonation of carbon acids is often limited by slow

kinetics.6 As a result dialkylzincs and ZnPh2 are only able to

deprotonate carbon acids that have pKa
7 values below 29.

Reported examples have involved ketones,8 MeNO2,
9 dimethyl

malonate,10 fluorene,11 and terminal alkynes.12,13 The reported

reactivity of Zn amidos has likewise been limited to acidic

substrates.14 Consistent with the aforementioned studies, we

observed no reaction between ZnR2 (R 5 Et, Ph) and N,N-

diethylacetamide (DEA, pKa 5 357) or N,N-diisopropylacetamide

(DIPA) in C6D6 solution at 75 uC over several days. To our

surprise, the addition of Et2NH to the above solutions led to the

formation of measurable quantities of a-zincated amides (eqn (1)).

Following this observation we initiated a systematic study of the

deprotonation of DEA by ZnPh2 promoted by a range of different

amines. Initial studies revealed that both 1u and 2u amines were

able to accelerate the H–Zn exchange reaction. For example,

heating a mixture of DEA, 1 equiv. t-BuNH2, and 2 equiv. ZnPh2

to 50 uC for 24 h formed the a-zincated amide in 26% yield

(Table 1, entry 1). The use of Et2NH under the same conditions

gave a yield of 47% (entry 2). In contrast, all 3u amines and

pyridines were ineffective (entries 3–5).

ð1Þ

The steric profile of an amine is important in determining its

activity. Thus while Et2NH was moderately effective, the bulkier

i-Pr2NH afforded only 7% of the zincated product (entry 6). Small

cyclic amines gave the best results. For example, the use of 1 equiv.

of morpholine with 2 equiv. ZnPh2 gave 91% yield (entry 10).

Repeating the reaction with 3 equiv. ZnPh2 did not significantly

increase the yield (entry 11), but the use of 1 equiv. ZnPh2 gave a

reduced yield of 62% (entry 12). The use of substoichiometric

quantities of the amines gave low to modest yields, but with

multiple turnovers based on amine. For example, the reaction of

DEA, 0.1 equiv. pyrrolidine, and 1.1 equiv. ZnPh2 afforded the

zincated product in 40% yield (entry 15). Lastly, the use of ZnEt2
instead of ZnPh2 gave relatively poor results (entry 16).

Reformatsky amides are frequently used in addition reactions

with unsaturated substrates and in transmetalations with

transition-metal salts.15 The solutions of a-zincated amides

described in Table 1 are conveniently used in this context.

PhZn[CH2C(O)NEt2]
16 was reacted with 1 equiv. PhCHO in

toluene solution for 12 h and quenched with NH4Cl(aq). The

expected addition product Et2NC(O)CH2CH(Ph)OH17 was

formed in 57% yield.18 The use of 10 equiv. PhCHO increased

the yield to 78%. Reaction of the same preparation of

PhZn[CH2C(O)NEt2] with 10 equiv. I2 afforded N,N-diethyl-1-

iodoacetamide19 in 88% yield.

Amine-promoted H–Zn exchange is potentially useful for many

substrates in addition to carboxy amides. Preliminary screening

has revealed promising results for a diverse set of functionalized

organics. Experiments with Me3PO and Me(MeO)2PO (DMMP)

are shown in Table 2. Relative to DEA, these substrates display

greater reactivity with ZnPh2–amine mixtures. For example,

Me3PO was zincated quantitatively in the presence of 1 equiv.

morpholine and 2 equiv. ZnPh2 at 50 uC over 24 h (entry 2).

Catalytic quantities of amines were also found to be very effective.

The use of only 0.1 equiv. pyrrolidine and 1.1 equiv. ZnPh2 formed

the zincated product in 99% yield (entry 4). H–Zn exchange
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reactions using Me(MeO)2PO gave similar results, although

slightly lower yields were obtained (entries 7–9).

A simplified20 mechanism for the H–Zn exchange is shown in

Scheme 1. First the 2u amine reacts with ZnPh2 to generate

PhZnNR2.
21 Then this intermediate reacts with the substrate

(CH3FG) (where FG is a functional group) to form a-zincated

PhZn[CH2FG] and HNR2. The deprotonation of the substrate is

expected to be reversible, with a Keq
22 dependent on the heterolytic

dissociation constants of the four reactants.14a,23

The first step of the mechanism was explored by observing the

reaction rate of ZnPh2 with various amines. Heating a mixture of

ZnPh2, 1 equiv. morpholine, and CD2Cl2 to 50 uC gave complete

conversion to PhZn(NC4H8O) and PhH within 15 min. The other

cyclic amines from Table 1 were also quickly deprotonated by

ZnPh2. Repeating the reaction with i-Pr2NH, however, gave ,5%

conversion after 20 h. Thus the hindered amines (i.e. i-Pr2NH,

(Me3Si)2NH) are ineffective promoters of H–Zn exchange because

they do not form Zn amidos at a reasonable rate. The use of ZnEt2

instead of ZnPh2 similarly results in the slow formation of a Zn

amido. Heating ZnEt2 and 1 equiv. morpholine in CD2Cl2 to 50 uC
gave ,30% conversion after 20 h.

The second step of the mechanism involves the reversible

deprotonation of a carbon acid by a Zn amido. Related chemistry

has been reported for EtZnN(i-Pr)2 and EtZnNPh2, which

partially deprotonate t-BuC(O)Et (pKa $ 28) to form Zn enolate

and amine.14a Our studies indicate that Zn amidos are capable of

deprotonating less acidic substrates with pKa values up to 35. Thus

heating a toluene solution of mononuclear Zn[N(SiMe3)2]2
(0.046 M) and 1 equiv. DEA (0.046 M) to 50 uC for 22 h led to

49% zincation (entry 17, Table 1). Repeating the reaction with

Me3PO and Me(MeO)2PO gave 91 and 56% zincation, respectively

(Table 2, entries 5, 10).24 In all cases, increasing the reaction times

did not lead to significant changes in yield, thus indicating that

thermodynamic equilibrium had been reached.

In conclusion, stoichiometric or catalytic quantities of simple 2u
amines increase the rate of H–Zn exchange between ZnPh2 and a

range of functionalized substrates. Key to this process is the

intermediacy of Zn amido species which are competent for the

deprotonation of functionalized carbon acids. Using this method

a-zincated derivatives of amides, phosphonates, and phosphine

oxides have been conveniently prepared for the first time without

the use of strongly basic or halogenated reactants.
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