$\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7^{+}}$-an unusual, highly charged bismuth fluoro complex in $\left(\mathrm{Se}_{4}\right)\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]\left[\mathrm{AsF}_{6} \mathrm{I}_{9} \cdot \mathbf{1 0} \mathrm{SO}_{2}\right.$

Johannes Beck* and Folker Steden ${ }^{\dagger}$
Received (in Cambridge, UK) 23rd June 2005, Accepted 9th September 2005
First published as an Advance Article on the web 4th October 2005
DOI: 10.1039/b508898d

A unique, highly charged cationic bismuth fluoro cluster $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$, embedded in the complex crystal structure of $\left(\mathrm{Se}_{4}\right)^{2+}\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}\left[\mathrm{AsF}_{6}{ }^{-}{ }_{9} \cdot 10 \mathrm{SO}_{2}\right.$, was synthesized from $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ and AsF_{5} in liquid SO_{2}.

Arsenic pentafluoride is a powerful oxidant and a very strong Lewis acid. It can be reduced to AsF_{3} and it can take up fluoride ions to form very weakly basic $\left[\mathrm{AsF}_{6}\right]^{-}$ions. In liquid sulfur dioxide it selectively oxidizes the elemental chalcogens sulfur, selenium and tellurium to a broad variety of polycationic clusters. ${ }^{1}$ Bismuth reacts similarly. It is converted by AsF_{5} in SO_{2} to $\mathrm{Bi}_{5}\left[\mathrm{AsF}_{6}\right]_{3}$, containing the trigonal-bipyramidal $\mathrm{Bi}_{5}{ }^{3+}$ cluster which has been characterized by vibrational spectroscopy. ${ }^{2}$

Recently we succeeded in the synthesis of the first cube-shaped polycationic clusters $\left(\mathrm{Bi}_{4} \mathrm{E}_{4}\right)^{4+}, \mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$, which were obtained from $\mathrm{NaCl} / \mathrm{AlCl}_{3}$ melts as the respective tetrachloroaluminates. ${ }^{3}$ Since both, $\left[\mathrm{AlCl}_{4}\right]^{-}$and $\left[\mathrm{AsF}_{6}\right]^{-}$are suitable counterions to stabilze polycationic clusters we expanded our attempts to synthesize heteronuclear bismuth containing clusters using the $\mathrm{AsF}_{5} / \mathrm{SO}_{2}$ reaction medium. Our attempts, however, were unsuccessful when mixtures of Bi and chalcogen were used as starting materials since both were oxidized to homonuclear polycationic clusters. The solubility of $\mathrm{Bi}_{5}\left[\mathrm{AsF}_{6}\right]_{3}$ in liquid SO_{2} is, however, very low which always leads to a yellow precipitation besides a dark colored solution containing the soluble chalcogen clusters. Using instead bismuth chalcogenides $\mathrm{Bi}_{2} \mathrm{E}_{3}(\mathrm{E}=\mathrm{Se}, \mathrm{Te})$ the oxidations with AsF_{5} developed completely differently. In the case of $\mathrm{Bi}_{2} \mathrm{Te}_{3}$ we could isolate mixed $\mathrm{Te} / \mathrm{Bi}$ clusters. ${ }^{4}$ The reaction of $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ with AsF_{5} in liquid SO_{2} leads to a complete dissolution of all starting material. The solution achieves a deep green coloration which is typical for solutions of the $\mathrm{Se}_{8}{ }^{2+}$ cation. On evaporating the solvent light-yellow crystals of $\left(\mathrm{Se}_{4}\right)\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]\left[\mathrm{AsF}_{6}\right] \cdot 10 \mathrm{SO}_{2} \mathbf{1}$ are deposited. \ddagger The compound is sensitive towards moist air and towards loss of SO_{2}, so handling of the crystals afforded an atmosphere of SO_{2} or low temperatures.

Raman spectra were taken from crystals adherent at the inner walls of the reaction vessel. Small quantities of liquid SO_{2} covering the crystals cannot be avoided by this method and are necessary to stabilize the crystals. One band attributable to SO_{2} shows a splitting caused by the different vibration energies of the liquid solvent and the SO_{2} molecules in the crystal lattice. This is the

[^0]asymmetrical stretching vibration $v_{\text {as }} / \mathrm{A}_{1}$ of the solvent which is expected at and observed at $1337 \mathrm{~cm}^{-1}$, while $v_{\text {as }}$ of the SO_{2} molecules in the crystal lattice appear at $1324 \mathrm{~cm}^{-1}$. The other principal vibrations of $\mathrm{SO}_{2}\left(v_{\mathrm{s}} / \mathrm{B}_{2}\right.$ at $1144, \delta$ at $\left.522 \mathrm{~cm}^{-1}\right)$ are all observed only slightly shifted at 1146 and $523 \mathrm{~cm}^{-1}$. All bands of the $\mathrm{Se}_{4}{ }^{2+}$ ion appear at energies in accordance to literature data $\left(\mathrm{A}_{1 \mathrm{~g}} / \mathrm{B}_{2 \mathrm{~g}} 319, \mathrm{~B}_{1 \mathrm{~g}} 182 \mathrm{~cm}^{-1}\right) .{ }^{5}$ The Raman intensities of vibrations of the $\left[\mathrm{AsF}_{6}\right]^{-}$ions are found to be very weak and only the symmetrical A_{lg} mode at $675 \mathrm{~cm}^{-1}$ can be assigned. A Raman line at $114 \mathrm{~cm}^{-1}$ could not be assigned to either $\mathrm{SO}_{2}, \mathrm{Se}_{4}{ }^{2+}$ or $\left[\mathrm{AsF}_{6}\right]^{-}$ and probably originates from the $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ cluster ion.
Due to the high SO_{2} content the crystals had to be selected under cooling for the structure determination. ${ }^{6}$ The intensity data were taken at $125 \mathrm{~K} . \S$ The crystal structure of 1 contains one formula unit in the triclinic, centrosymmetric unit cell (Fig. 1). Four different molecular units are present, three of which are well known: square-planar $\mathrm{Se}_{4}{ }^{2+}$ cations, octahedral $\left[\mathrm{AsF}_{6}\right]^{-}$ions and SO_{2} molecules. There is one independent $\mathrm{Se}_{4}{ }^{2+}$ ion exhibiting inversion symmetry. The two $\mathrm{Se}-\mathrm{Se}$ bonds of 2.295(2) and $2.281(2) \AA$ and the $\mathrm{Se}-\mathrm{Se}-\mathrm{Se}$ angles of $90.34(4)$ and $89.66(4)^{\circ}$

Fig. 1 The unit cell of $\left(\mathrm{Se}_{4}\right)\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]\left[\mathrm{AsF}_{6}\right] 9 \cdot 10 \mathrm{SO}_{2}$ 1. $\left[\mathrm{AsF}_{6}\right]^{-}$ions are depicted as massive octahedra.

Fig. 2 The $\mathrm{Se}_{4}{ }^{2+}$ ion in the structure of 1. Nearest neighbouring SO_{2} and $\left[\mathrm{AsF}_{6}\right]^{-}$molecules with $\mathrm{Se} \cdots \mathrm{O}$ and $\mathrm{Se} \cdots \mathrm{F}$ distances less than $3 \AA$ are included. Thermal ellipsoides are scaled to enclose a 50% probability density.
together with the planarity of the ion underline the only slight deviation from the ideal $D_{4 h}$ symmetry and are in line with typical structural parameters for $\mathrm{Se}_{4}{ }^{2+}$ ions. ${ }^{7}$ In the first coordination sphere of $\mathrm{Se}_{4}{ }^{2+}$ there are four SO_{2} molecules coordinating the square over the edges via oxygen atoms (Fig. 2) with all $\mathrm{Se}-\mathrm{O}$ distances shorter than 300 pm . The S-O bonds (from 1.39(2) to $1.44(7) \AA$) and the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles (from $116(1)$ to $120(1)^{\circ}$) are in the usual range found for SO_{2} in the solid state ${ }^{8}$ and in the gas phase. ${ }^{9}$ There are five independent $\left[\mathrm{AsF}_{6}\right]^{-}$ions of only slightly distorted octahedral shape in the structure of $\mathbf{1}$. One of them, $\left[\mathrm{As}(1) \mathrm{F}_{6}\right]^{-}$, is located in an inversion centre, the other four occupy general positions.

The remarkable building unit in this crystal structure is the unprecedented $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ ion. It is made up of three crystallographically independent Bi atoms and six independent F atoms, one of which $(\mathrm{F}(71))$ is located in an inversion centre giving the whole $\mathrm{Bi}_{6} \mathrm{~F}_{11}$ group crystallographic C_{i} symmetry. The local symmetry, however, deviates only slightly from $D_{2 h}$. The six Bi atoms form a flatened octahedron with one F atom in the centre. The strictly linear $\mathrm{Bi}-\mathrm{F}-\mathrm{Bi}$ group is unique for Bi^{3+} but is common for Bi^{5+} as present in the structure of $\mathrm{BiF}_{5} .^{10}$ The other F atoms are also bridging between Bi atoms and are located over the edges of the Bi_{6} group (Fig. 3). The Bi-F bonds are in the range from $2.131(5)$ to $2.302(5) \AA$ with an average of $2.194 \AA$. These $\mathrm{Bi}-\mathrm{F}-\mathrm{Bi}$

Fig. 3 The $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ cluster in the structure of 1. $\mathrm{F}(71)$ is located in an inversion centre. Thermal ellipsoides are scaled to enclose a 50% probability density. Bond lengths $[\AA$]: $\mathrm{Bi}(1)-\mathrm{F}(72) 2.132(4), \mathrm{Bi}(1)-\mathrm{F}(73)$ 2.131(4), $\operatorname{Bi}(1)-\mathrm{F}(76) 2.160(4), \mathrm{Bi}(2)-\mathrm{F}(71)$ 2.145(1), $\mathrm{Bi}(2)-\mathrm{F}(72) 2.274(4)$, $\mathrm{Bi}(2)-\mathrm{F}\left(73^{\prime}\right) 2.278(4), \mathrm{Bi}(2)-\mathrm{F}(74)$ 2.302(4), $\mathrm{Bi}(2)-\mathrm{F}\left(75^{\prime}\right) 2.269(5), \mathrm{Bi}(3)-$ $\mathrm{F}(74)$ 2.139(5), $\mathrm{Bi}(3)-\mathrm{F}(75)$ 2.144(5), $\mathrm{Bi}(3)-\mathrm{F}(76) 2.154(4)$.

Fig. 4 The surroundings of the $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ cluster in the structure of $\mathbf{1}$. The $\mathrm{Bi}_{6} \mathrm{~F}_{11}$ group, coordinated by $8 \mathrm{SO}_{2}$ molecules and $14\left[\mathrm{AsF}_{6}\right]^{-}$ions, is shown as a Bi_{6} octahedron with its edges bridged by F atoms. $\left[\mathrm{AsF}_{6}\right]^{-}$ions are depicted as massive octahedra.
bridges are, however, not linear. $\mathrm{Bi}(1)-\mathrm{F}(76)-\mathrm{Bi}(3)$ is nearly (170.3(3) ${ }^{\circ}$) linear, all other $\mathrm{Bi}-\mathrm{F}-\mathrm{Bi}$ bridges are in the narrow range between $144.0(2)$ and $145.8(2)^{\circ}$. The Bi atoms are coordinated in a second sphere by F atoms of neighboring [$\left.\mathrm{AsF}_{6}\right]^{-}$anions and by O atoms of SO_{2} molecules (Fig. 4). These secondary bonds have the averaged lengths of $\mathrm{Bi} \cdots \mathrm{F}=2.712 \AA$ and $\mathrm{Bi} \cdots \mathrm{O}=2.720 \AA$ and are thus much longer than the $\mathrm{Bi}-\mathrm{F}$ bonds within the $\mathrm{Bi}_{6} \mathrm{~F}_{11}$ unit. The $\left[\mathrm{AsF}_{6}\right]^{-}$ions exhibit between two and four contacts to the Bi atoms. The As-F bond lengths are, however, only slightly enlongated by the As- $\mathrm{F} \cdots \mathrm{Bi}$ bridges. The As-F bonds of the non-bridging, terminal F atoms have an average length of $1.702 \AA$ while the respective bonds to the bridging F atoms are $1.744 \AA$. The small difference of $0.042 \AA$ allows for an interpretation of the presence of discrete [$\left.\mathrm{AsF}_{6}\right]^{-}$groups.

Enlarging the coordination sphere of the Bi atoms to $3.5 \AA$, $\operatorname{Bi}(1)$ and $\operatorname{Bi}(3)$ obtain a $3+6$ coordination, while $\operatorname{Bi}(2)$ obtains a $5+4$ coordination, all in the form of a distorted monocapped square antiprism. The coordination number 9 for trivalent Bi is also found in the structure of BiF_{3} with $\mathrm{Bi}-\mathrm{F}$ distances from 2.21 to $2.50 \AA \AA^{11} \mathrm{Bi}$ in oxidation state +V exhibits significantly shorter $\mathrm{Bi}-\mathrm{F}$ bonds. In BiF_{5} the $\mathrm{Bi}-\mathrm{F}$ distances are below $2.11 \AA .{ }^{10}$ The amount of charge transfer from the $\left[\mathrm{AsF}_{6}\right]^{-}$anions to the cationic $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ group by secondary $\mathrm{Bi} \cdots \mathrm{F}$ contacts can be estimated by a bond valence calculation. ${ }^{12}$ The sums of all bond valences for the Bi atoms are on average 3.1 and for the As atoms on average 4.6. Since the expected values for Bi^{3+} and As^{5+} are almost fulfilled and only slight "underbonding" for the As atoms and slight "overbonding" for the Bi atoms is present it is obvious to assign oxidation state + III to the Bi and +V to the As atoms. The pronounced asymmetrical coordination environment of the Bi atoms can be interpreted by the effect of a stereochemically active lone pair which also underlines the presence of $\mathrm{Bi}(\mathrm{III})$. So it is obvious to separate the building units in the crystal structure of $\mathbf{1}$ according to the ionic formula $\left(\mathrm{Se}_{4}\right)^{2+}\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}\left(\left[\mathrm{AsF}_{6}\right]^{-}\right)_{9} \cdot 10 \mathrm{SO}_{2}$. The alternative interpretation is to neglect the bond length
differences and to treat all $\mathrm{Bi}-\mathrm{F}$ bonds as equal. This leads to a one-dimensional polymeric anion $\left[\left(\mathrm{As}_{9} \mathrm{Bi}_{6} \mathrm{~F}_{65} \cdot 6 \mathrm{SO}_{2}\right)^{2-}\right]_{n} .{ }^{13}$ The pronounced separation of the $\mathrm{Bi}_{6} \mathrm{~F}_{11}$ group within the coordination sphere of the surrounding AsF_{6} groups, however, confirms the ionic model with a $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ cation stabilized by $\left[\mathrm{AsF}_{6}\right]^{-}$anions.

There are only a few compounds known with structures comparable to $1 . \mathrm{SbF}_{3}$ and SbF_{5} form a series of mixed fluorides. In the structures a clear separation in Sb (III) and Sb (V) exists and the assignment of octahedral $\left[\mathrm{SbF}_{6}\right]^{-}$ions is possible with the consequence of the assumption of cationic Sb (III) fluoro building units with asymmetrically coordinated Sb atoms. $\mathrm{Sb}_{4} \mathrm{~F}_{14}{ }^{14}$ can be divided into $\left(\mathrm{Sb}_{3} \mathrm{~F}_{8}\right)^{+}\left[\mathrm{SbF}_{6}\right]^{-}, \mathrm{Sb}_{4} \mathrm{~F}_{16}{ }^{15}$ into $\left(\mathrm{Sb}_{2} \mathrm{~F}_{4}\right)^{2+}\left(\left[\mathrm{SbF}_{6}\right]^{-}\right)_{2}$, $\mathrm{Sb}_{8} \mathrm{~F}_{30}{ }^{16}$ into $\left(\mathrm{Sb}_{5} \mathrm{~F}_{12}\right)^{3+}\left(\left[\mathrm{SbF}_{6}\right]^{-}\right)_{3}$, and $\mathrm{Sb}_{11} \mathrm{~F}_{43}{ }^{17}$ into $\left(\mathrm{Sb}_{6} \mathrm{~F}_{13}\right)^{5+}\left(\left[\mathrm{SbF}_{6}\right]^{-}\right)_{5}$. Weakly coordinating anions can cause $\mathrm{Bi}(\mathrm{III})$ compounds to separate into highly charged cationic clusters. This is found for $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\right]^{6+}\left(\mathrm{X}^{-}\right)_{6} \cdot n \mathrm{H}_{2} \mathrm{O}\left(\mathrm{X}=\mathrm{ClO}_{4}, n=7 ;{ }^{18}\right.$ $\mathrm{X}=\mathrm{NO}_{3}, n=4^{19}$). Here, octahedral Bi_{6} groups are present with O and OH ligands capping the triangular faces. In the structure of $\mathrm{Ba}_{4} \mathrm{Bi}_{3} \mathrm{~F}_{17}$ octahedral Bi_{6} groups are present with all edges bridged by F^{-}ions. ${ }^{20}$ In contrast to $\mathrm{Bi}_{6} \mathrm{~F}_{11}{ }^{7+}$ where the Bi_{6} groups are centered by F^{-}ions the Bi_{6} groups of the latter two compounds, however, are empty.

Notes and references

\# Bismuth selenide $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ was prepared from a stochiometric mixture of the elements which was heated for 7 days at $720^{\circ} \mathrm{C}$ in an evacuated closed quartz ampoule. $\mathrm{Bi}_{2} \mathrm{Se}_{3}(312 \mathrm{mg}, 0.476 \mathrm{mmol})$ was filled in one bulb of a H-shaped reaction vessel equipped with two Young teflon screw cocks and a frit between the two bulbs. ${ }^{21} 40 \mathrm{ml} \mathrm{SO} 2$, dried by storage over CaH_{2}, and $800 \mathrm{mg}(4.69 \mathrm{mmol}) \mathrm{AsF}_{5}$ were condensed into this bulb using a cold bath of liquid N_{2}. After warming up to ambient temperature and stirring a darkgreen solution is formed. Within 20 min all $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ is dissolved and the solution is filtered into the second bulb. Destilling back the SO_{2} leaves a green oil. $20 \mathrm{ml} \mathrm{SO}_{2}$ are then distilled on the oil to obtain a concentrated solution. After standing for 12 h light-yellow transparent crystals of 1 deposit. Yield 70%. Raman $\left(\mathrm{cm}^{-1}\right) 114 \mathrm{w}, 182 \mathrm{w}, 319 \mathrm{~m}, 523 \mathrm{w}, 675 \mathrm{~m}$, 1146 s, 1324 m.
§ Crystallographic data for 1: $\mathrm{As}_{9} \mathrm{Bi}_{6} \mathrm{~F}_{65} \mathrm{O}_{20} \mathrm{~S}_{10} \mathrm{Se}_{4}, \mathrm{Mr}=4119.50$. Triclinic, space group $P-1, a=10.3635(1), b=13.5024(1), c=15.0589(1) \AA$, $\alpha=69.303(1), \beta=72.326(1), \gamma=69.716(1)^{\circ}, V=1809.19(2) \AA, Z=1$, $\mu=21.14 \mathrm{~mm}^{-1}$, numerial absorption correction (HABITUS), ${ }^{22} \rho=$ $3.781 \mathrm{gcm}^{-3}$, temperature $125 \mathrm{~K}, 19023$ reflections collected, 10237 unique, $R_{\text {int }}=0.052, R(|F|)=0.0457[I>2 \sigma(I)], w R\left(F^{2}\right)=0.1273 .{ }^{23} \mathrm{CCDC}$ depositon number: CCDC 276950. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b508898d

1 (a) R. J. Gillespie, J. Chem. Soc. Rev., 1979, 8, 315; (b) S. Brownridge, I. Krossing, J. Passmore, H. D. B. Jenkins and H. K. Roobottom, Coord. Chem. Rev., 2000, 197, 379.
2 R. C. Burns, R. J. Gillespie and W.-C. Luk, Inorg. Chem., 1978, 17, 3596.

3 (a) J. Beck, S. Schlüter and M. Dolg, Angew. Chem., Int. Ed., 2001, 40, 2287; (b) J. Beck, S. Schlüter and N. Zotov, Z. Anorg. Chem. Chem., 2004, 630, 2512.
4 J. Beck and F. Steden, publication in preparation.
5 R. C. Burns and R. J. Gillespie, Inorg. Chem., 1982, 21, 3877.
6 T. Kottke and D. Stahlke, J. Appl. Crystallogr., 1993, 26, 615.
7 (a) I. D. Brown, D. B. Crumb and R. J. Gillespie, Inorg. Chem., 1971, 10, 2319; (b) G. Cardinal, R. J. Gillespie, J. F. Sawyer and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1982, 765; (c) J. Beck and K.-J. Schlitt, Chem. Ber., 1995, 128, 763; (d) J. Beck and T. Hilbert, Z. Anorg. Allg. Chem., 2000, 626, 837.
8 B. Post, R. S. Schwarz and I. Fankuchen, Acta Crystallogr., 1952, 5, 372.

9 H. D. Kivelson, J. Chem. Phys., 1954, 22, 904.
10 C. Hebecker, Z. Anorg. Allg. Chem., 1971, 384, 111.
11 A. K. Cheetham and N. Norman, Acta Chem. Scand., 1974, 28 A, 55.
12 (a) I. D. Brown, Structure and Bonding in Crystals, Academic Press, 1981; (b) The following parameters were used: $\mathrm{R}_{\mathrm{o}}(\mathrm{Bi}-\mathrm{F})=1.99 \AA$, $\mathrm{R}_{\mathrm{o}}(\mathrm{Bi}-\mathrm{O})=2.09 \AA, \mathrm{R}_{\mathrm{o}}(\mathrm{As}-\mathrm{F})=1.62 \AA, \mathrm{~B}=0.37 . \mathrm{Bi}-\mathrm{F}$ and $\mathrm{Bi}-\mathrm{O}$ distances up to $3 \AA$ and As-F distances up to $2 \AA$ were taken into account. Calculated values: $\operatorname{Bi}(1) 3.14, \operatorname{Bi}(2) 3.09, \operatorname{Bi}(3) 3.14, \mathrm{As}(1) 4.60$, $\mathrm{As}(2) 4.70, \mathrm{As}(3) 4.50, \mathrm{As}(4) 4.45, \mathrm{As}(5) 4.58$.
13 Setting up this polymeric formula is not without ambiguity since the $\mathrm{S}(1) \mathrm{O}_{2}$ and $\mathrm{S}(3) \mathrm{O}_{2}$ molecules have a bridging function between $\left[\mathrm{Bi}_{6} \mathrm{~F}_{11}\right]^{7+}$ and $\mathrm{Se}_{4}{ }^{2+}$. So for the formula setup one of the bridging SO_{2} molecules was attributed to the polymeric anion.
14 W. A. S. Nandana, J. Passmore, D. C. N. Swindells, P. Taylor, P. S. White and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1983, 619.

15 R. J. Gillespie, D. R. Slim and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1977, 971.
16 (a) W. A. S. Nandana, J. Passmore, P. S. White and C.-M. Wong, J. Chem. Soc., Dalton Trans., 1987, 1989; (b) R. Minkwitz and J. Nowicki, Z. Anorg. Allg. Chem., 1991, 605, 109.

17 W. A. S. Nandana, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1985, 1623.
18 Sundvall, Inorg. Chem., 1983, 22, 1906.
19 F. Lazarini, Cryst. Struct. Commun., 1979, 8, 69.
20 E. N. Dombrovski, T. V. Serov, A. M. Abakumov, E. I. Ardashnikova, V. A. Dolgikh and G. van Tendeloo, J. Solid State Chem., 2004, 177, 312.

21 J. Beck and F. Steden, Z. Naturforsch., 2003, 58b, 711.
22 H. Baernighausen and W. Herrendorf, HABITUS, Program for the optimization of the crystal shape for numerical absorption correction, Universities of Karlsruhe and Gießen, Germany, 1997.
23 The crystal structure was solved with the program SHELXS97, G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997, and refined with SHELXL97, G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.

[^0]: Universitaet Bonn, Institut fuer Anorganische Chemie,
 Gerhard-Domagk-Str. 1, D-53121 Bonn.E-mail: j.beck@uni-bonn.de; Fax: 0049228 735660; Tel: 0049228733114
 \dagger Present address: Technische Universitaet Dresden, Institut fuer Anorganische Chemie, Helmholtzstr. 10, D-01069 Dresden, Fax: 0049351 46337287; Tel: 0049351 46334896; E-mail: Folker.Steden@chemie.tu-dresden.de

