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Janus silica nanoparticles, regioselectively functionalized by two

different chemical groups, were synthesized through a multistep

procedure based on the use of a polystyrene nodule as a

protecting mask.

Since the original work of Casagrande and Veyssié in the late

eighties,1 several methods for fabricating surface-dissymmetrical

particles, firstly called ‘‘Janus’’ particles by de Gennes2 with

reference to the double-faced god of the Doors (literally ‘‘Janus’’ in

Latin), have been reported. Most of these techniques are based on

the use of an interface between two media3 or the exposure to a

directional flux4 as dissymetrization tool. For instance, micro-

metric ‘‘Janus’’ polystyrene latexes have been obtained recently by

replication of particle monolayers at liquid surfaces5 or by micro-

contact printing techniques.6 Nevertheless, there are only few

reports on the synthesis of large amounts of ‘‘Janus’’ structures

that are smaller than one micron.7 Here we report a new method

to create Janus nanoparticles in batch, at the gram scale. On the

basis of the concept that a removable mask can temporarily

protect a part of an object in a reactive medium, a polymer nodule

is grown onto the surface of silica particles to yield silica/polymer

dissymmetrical colloids. The unprotected mineral part of the

resulting snowman-like particles is selectively functionalized and

the protecting polymer mask is removed in a subsequent step

(Scheme 1).

To demonstrate the regioselectivity of the surface modification

reaction, we used gold nanocolloids as markers, and we also grew

a gold cap on a single side of the mineral spheres. Besides demon-

strating the efficiency of using a polymer latex as a protective

mask, this work offers a convenient methodology to fabricate large

amounts of surface-dissymmetrical functional nanoparticles. These

nanostructures may be useful for biomedical applications such as

cells or proteins binding, biosensors, or may act as particulate

surfactants in the stabilization of complex media.

The synthetic route for making the ‘‘Janus’’ nanoparticles first

consists in the emulsion polymerization of styrene in the presence

of silica particles (with diameters ranging from 50 to 150 nm),

which have been surface-modified by polymerizable groups (see

Supplementary Information{). In such conditions, the formation

of polystyrene nodules is highly favored at the silica surface.8 Then,

in the case when the ratio between the number of silica seeds and

the number of growing nodules is close to one, snowman-like

hybrid nanostructures are obtained9,10 with a high yield, ca. 85%

(see stage a) on Scheme 1 and Fig. 1). Lone silica particles or

hybrid particles made of two polystyrene nodules attached to one

silica sphere are in fact rarely observed. The affinity of the

polystyrene nodule for the mineral sphere and the morphology of

the resulting hybrid nanostructures can be tuned by varying the

density of polymerizable groups at the surface of the mineral

precursors and the reaction time (stage b)).10 The formation of the

snowman-like particles is based on the copolymerization of

oligomers with the double bonds which are present at the silica

surface. Chemisorbed polymer chains are thus generated. As the

density of polymerizable groups at the surface of the silica particles

is low, these polymer chains form one single nodule at the surface
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Scheme 1 Schematic representation of the consecutive stages for the

fabrication of the ‘‘Janus’’ nanoparticles.

Fig. 1 Transmission electron microscopy (TEM) images of snowman-

like particles. Diameter of the silica seeds : 80 nm (left) and 150 nm (right).
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of the silica particle, as the high interfacial energy (due to the

presence of unreacted silanol groups) does not promote their

spreading on the surface.

The specific functionalization of the unprotected silica surface

with a trialkoxysilane derivative is then carried out (stage c)). For

example, the grafting of methyl groups can be easily achieved by

adding methyltriethoxysilane (typically, in a quantity correspond-

ing to 15 functions per nm2 of nanoparticles surface) in a slightly

basic water–ethanol (50 : 50 v/v) suspension of the snowman-like

particles. After three dialysis stages versus water which aim to

remove the unreacted species, the separation of the organic and

mineral components is realized under ultra-sonication (350 W) in

pure water for 45 minutes, or by ultra-centrifugation in an aqueous

solution of sodium dodecyl sulfate (0.04 mol L21) at 50 000 rpm

during 15 minutes (stage d)). The surfactant favors the separation

of the two parts by decreasing the surface energy of the created

interfaces. TEM images (Fig. 2) of the resulting suspension

confirm the presence of latex particles exhibiting a circular notch

(indicated by arrows) as a trace of their previous anchoring at the

silica surface, and deprotected ‘‘Janus’’ silica particles. The organic

and mineral species can be isolated by centrifugation at 4000 rpm

in an ethanol–water (50 : 50 v/v) mixture, the silica particles

sedimenting whereas the latex particles remain in the supernatant

(see Supplementary Information Fig. 1{). Typically, one gram of

‘‘Janus’’ particles can be obtained within two days.

Possibly, the deprotected zone of the silica surface can be

functionalized in a similar way as previously, with a second

trialkoxysilane derivative (stage e)). For instance, the grafting of

amine groups can be achieved by using aminopropyltriethoxy-

silane. The efficiency of this functionalization can be evidenced by

mixing the hybrid colloids with an aqueous suspension of citrate-

stabilized 18 nm gold nanoparticles,11 which specifically adsorb

onto the amine-grafted mineral surface.12 Indeed, TEM images

shown in Fig. 3 clearly demonstrate that the gold nanocolloids are

adsorbed onto a specific zone of the silica particles, suggesting

their dissymmetrical ‘‘Janus’’ character. As a comparison, similar

experiments with silica particles functionalized with amine or

methyl groups on the whole surface were also carried out. The first

ones exhibited heavy isotropic coverage of gold nanocolloids

whereas no adsorption was observed on the second ones (see

Supplementary Information Fig. 2{). We have also taken benefit

of this regioselective functionalization of the silica spheres with

amine groups to synthesize a gold cap onto one side of the silica

particles, following the procedure reported by Graf and van

Blaaderen13 (see Supplementary Information Fig. 3{). Such

heterostructures can be rendered sensitive to the gradient of their

physicochemical microenvironment through a subsequent func-

tionalization of the metallic cap by thiols with ionizable groups.4a

In summary, we have demonstrated an efficient strategy to form

large amounts of ‘‘Janus’’ nanoparticles based on the use of a

polymer nodule as a mask. This method offers easy access to

nanostructures that can be amphiphilic, bifluorescent, responsive

to an electric field (with both hemispheres of opposite charges) or

simply functional for subsequent regioselective surface chemistry.

We believe that such materials will be useful as biological and

chemical sensors,14 stabilizers of complex media,15 and nanocom-

ponents in smart displays.15

The authors thank M. Martineau (CREMEM, Talence) for

TEM observations.
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Fig. 2 TEM images of the latex and silica particles partially (left) and

fully separated (right). Diameter of the silica seeds : 80 nm (left) and

100 nm (right).

Fig. 3 TEM images of ‘‘Janus’’ silica nanoparticles (diameter : 100 nm)

in which the amine grafted area is decorated by gold nanocolloids, the

remaining area being functionalized by methyl groups.
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