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A wide variety of tertiary carbinamines are synthesized in high

yields via diastereoselective allylation and crotylation of in situ

generated N-unsubstituted ketimines.

Research into the addition of allyl organometallics to carbonyl

compounds and their derivatives continues to proceed unabated—

a consequence of the fact that the resulting homoallylic products

have proven to be valuable synthons.1 The majority of the

research, however, has focused on the addition of these organo-

metallics to aldehydes and, to a lesser extent, ketones.2 Until

recently, the expansion of the substrate scope to include imines and

their derivatives had received limited attention.3,4

As part of an alkaloid synthesis program, we required a tertiary

carbinamine (4) that we anticipated could be synthesized through

crotylation of an N-unsubstituted ketimine (2)—a previously

unknown reaction. Inspired by the elegant report of aminoallyla-

tion of aldehydes by Kobayashi and coworkers,5 we sought to

develop a robust methodology for the diastereoselective allylation

and crotylation of 2 (Scheme 1).

We surveyed a number of methods to synthesize and isolate the

requisite substrate (2),6 but concluded that a three-component

reaction of the ketone, excess ammonia and the allylorganometallic

(3) was the most efficient and effective protocol to generate the

desired homoallylic amines. We suggest that N-unsubstituted

ketimine (2) is formed in situ prior to its reaction with the

allylorganometallic,5,7–9 but our hypothesis needs further detailed

validation. Next, we investigated the addition of a series of

allyl organometallics to the in situ generated ketimine 2 (R1 5

4-BrC6H4, R2 5 Me). The allylboron class of reagents were

demonstrably superior in terms of reactivity and chemoselec-

tivity.10 A more detailed investigation of a range of allylboron

compounds was undertaken in order to ascertain the reagent of

choice (Table 1). As anticipated, the more reactive allylboron

reagents, 5d and 5e,11 displayed the highest efficacy in terms

of isolated yields of homollylic amine 6a (entries 4 and 5). A

major issue of concern in all these reactions—chemoselectivity

of imine versus ketone addition—was addressed by analyzing

the organic extracts from the acid–base workup of 6a

(entries 4,5). It was determined that the corresponding homoallylic

alcohol of 6a was formed in minor amounts (¡5%). We

decided to continue our studies with allylboronic acid (5e) due

to its ease of preparation and the simple purification of the

resulting products.12

A series of ketones were then reacted with reagent 5e in

methanolic ammonia (Table 2).{ Aliphatic (entries 1–4), electron

rich aromatic (entry 5), electron deficient aromatic (entries 6 and 7),

a,b-unsaturated (entry 8), cyclic (entries 9 and 10) and heterocyclic-

substituted (entries 11 and 12) ketones were successfully allylated

under the standard conditions. The resulting homoallylic amines

(6) were easily isolated in high yields through simple acid–base

extraction, and in all cases but one, did not require any further

purification. A variety of functional groups are tolerated in the

reaction sequence including the nitro (entry 7), cyano (entry 6),
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Scheme 1 Diastereoselective allylation and crotylation of in situ

generated ketimines.

Table 1 Addition of allyl boron reagents (5) to N-unsubstituted
ketimine derived from 1a

Entry 5 Yield of 6a (%)a

1 35

2 29

3 43

4 70b,c

5 79b

a Isolated yield after acid–base extraction. b Analysis (1H NMR,
2.4,6-trimethylbenzene standard) of the organic phase from the acid–
base work-up revealed ¡5% of the corresponding homoallylic
alcohol. c Isolated yield after acid–base extraction and preparative
TLC.
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unprotected hydroxy (entry 2) and amino groups (entry 12). We

were, however, unable to extend the substrate scope to include

ketones that are either sterically hindered (e.g. pinacolone) or

contain active methylene groups (e.g. ethyl acetoacetate) under the

current conditions.

We next sought to investigate the allylation of ketones

containing a pre-existing stereocenter. The substrates (1n–q) were

subject to the standard set of reaction and work-up conditions, the

results of which are shown in eqns (1)–(4). Good to excellent yields

of tertiary carbinamines 6n–q were obtained in all cases, while the

observed diastereoselectivities, as determined by 1H NMR, varied

from modest for the reaction of 4-tert-butylcyclohexanone,

norchamphor, and benzoin13 (eqns (1), (2) and (3), respectively)

to excellent for verbenone (eqn (4)).

ð1Þ

ð2Þ

ð3Þ

13

Table 2 Reaction of N-unsubstituted imines derived from ketones
with allylboronic acid (5d)a

Entry Ketone Yield/%b

1 Et2CLO (1b) 73 (6b)
2 (1c) 80 (6c)

3 (1d) 78 (6d)

4 (1e) 85 (6e)

5 4–MeOC6H4C(O)CH2CH3 (1f) 72 (6f)
6 4–NCC6H4C(O)CH3 (1g) 80 (6g)
7 4–O2NC6H4C(O)CH3 (1h) 87 (6h)
8 (1i) 70 (6i)c

9 (1j) 78 (6j)

10 (1k) 92 (6k)

11 (1l) 75 (6l)

12 (1m) 80 (6m)

a Standard reaction conditions: A solution of the ketone (0.5 mmol),
ammonia (ca. 7N in MeOH, 0.75 mL, ca. 10 equiv.) and allylboronic
acid (5e) (2M in MeOH, 0.40 mL, 0.80 mmol) was stirred for 16 h
at rt. b Isolated yield after acid–base extraction. c Isolated yield after
acid–base extraction, and preparative TLC.

Table 3 Reaction of N-unsubstituted ketimines with (E)- and
(Z)-crotylboronic acid (7a/b)a

Entry Crotyl reagent Product Yield/%b d.r.

1 7a 80 (4a) 97 : 3

2 7b 73 (4b)c 96 : 4

3 7a 95 (4c)d 97 : 3

4 7b 92 (4d)d 96 : 4

5 7a 50 (4e) 97 : 3

6 7a 88 (4f)e 60 : 40

a Standard reaction conditions: ketone (0.5 mmol), ammonia (ca. 7N
in MeOH, 0.75 mL, ca. 10 equiv.) and crotylboronic acid (7a/b) (2M
in MeOH, 0.50 mL, 1.00 mmol) were stirred for 24 h at rt. b Isolated
yield after acid–base extraction. c Isolated yield after acid–base
extraction, and preparative TLC. d Methyl benzoylformate was
employed as the starting ketone, and aminolysis of the ester was
observed. e Methylpyruvate was employed as the starting ketone,
and aminolysis of the ester was observed.
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ð4Þ

Finally, crotylation of a select number of ketones was examined

under a slightly modified set of conditions (2.0 equiv. of 5e,

10 equiv. of NH3, rt, 24 h) (Table 3). Excellent diastereoselectivities

were obtained with acetophenone derivatives (entries 1–5). The

anti diastereomer (4a/c) was formed when (E)-crotylboronic acid

(7a) was employed as the reagent, while (Z)-crotylboronic acid (7b)

afforded the syn diastereomer (4b/d). The stereochemistry of the

crotylated products 4 were assigned based upon the reaction of 7a

with acetophenone (entry 5) which afforded the previously known

anti diastereomer 4e in moderate yield and excellent diastereo-

selectivity (d.r. 5 97:3).4a Crotylation of methylpyruvate (entry 6),

on the other hand, was not diastereoselective likely due to the

similar steric sizes of the methyl and methylformate groups. The

results from entries 3, 4 and 6 also constitute a convenient route to

a-allylated amino acid derivatives.14

In summary, an easily executable three component methodology

for allylation of N-unsubstituted imines derived from a diverse

range of ketones has been presented. The resulting homoallylic

amines were isolated in good to excellent yields through simple

acid–base extraction. More importantly, the crotylation of

N-unsubstituted ketimines was also shown to be highly diastereo-

selective. We are currently striving to ameliorate the described

methodology by expanding the substrate scope and developing

enantioselective variants.
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