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A new recyclable rhodium catalyst was synthesized by a simple

procedure from readily available reagents, which showed high

activities in the hydrogenation of various arenes under 1 atm

H2 at room temperature.

Metal nanoparticles are attracting much attention in organic

synthesis due to their distinct catalytic activities for various

transformations.1,2 Arene hydrogenation, which is an important

transformation for small scale synthesis as well as for industrial

process, is a typical example in that metal nanoparticles catalyze

the reaction under mild conditions.3–7 Bare metal nanoparticles are

kinetically unstable with respect to agglomeration; a wide variety

of methods to stabilize metal nanoparticles have been developed.3,4

However, they often suffer from difficult synthetic procedures, low

stability and low activity. Herein we report a readily preparable

rhodium nanoparticles in boehmite nanofibers for the hydrogena-

tion of various arenes. Our catalyst is robust in recycling and

highly active even at room temperature under 1 atm H2.

The catalyst, Rh/AlO(OH) (1), was synthesized by a one-pot

procedure similar to that for a palladium catalyst reported

previously by us (Scheme 1).8,9 Rhodium nanoparticles were

generated by heating a mixture of RhCl3 hydrate, 2-butanol and

Al(O-sec-Bu)3, and then entrapped in a boehmite matrix by

gelation with water. Dark gray powder obtained from the gel

through aging, washing with acetone, and drying was character-

ized by transmission electron microscopy (TEM) (Fig. 1), powder

X-ray diffraction (XRD) analysis (Fig. 2), 27Al magic-angle

spinning NMR (Fig. 3) and BET nitrogen adsorption analysis.

The low-resolution TEM image shows the boehmite nanofibers

morphology,10 while Rh nanoparticles entrapped in the boehmite

nanofibers are observed in the high-resolution image.11 The

crystalline state of the rhodium nanoparticles was verified by

XRD analysis.11 The particle size of rhodium was estimated to be

2.5–3.0 nm by HRTEM and XRD analysis. The 27Al NMR

spectrum of 1 shows three resonances at 7, 35 and 60 ppm. The

major resonance at 7 ppm is common in the spectra of boehmite
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Scheme 1 Preparation of the rhodium nanoparticle catalyst.

Fig. 1 TEM image: (a) low resolution, (b) high resolution

Fig. 2 XRD spectrum

Fig. 3 27Al MAS NMR spectra
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and a commercial Rh/Al2O3, which is corresponding to the

aluminum nuclei surrounded by oxygens in octahedral structure.11

The resonance at 60 ppm is also observed in the spectrum of

Rh/Al2O3, which reflects a tetrahedral structure.12 A trigonal-

bipyramidal structure or Al–O–Rh bonds would be responsible for

the unique resonance at 35 ppm.13 BET nitrogen adsorption

analysis reveals that the BET surface area, the pore volume and

the pore size of 1 are 616 m2 g21, 0.85 cm3 g21 and 2.9 nm,

respectively.

We tested the activity of 1 in the hydrogenation of benzene and

anisole and compared the activity with those of commercially

available rhodium catalysts and also with those reported

previously (Table 1). Benzene was hydrogenated to cyclohexane

completely within 30 min at 22 uC under 1 atm H2 by using 1

(1 mol% Rh). This activity is similar to that of a polymer-stabilized

rhodium catalyst (Rh/PVP) under the conditions of 7 atm H2 and

30 uC.14 The activity of 1 was much higher than that of an iridium

catalyst known for solventless hydrogenation;4 the turnover

frequency (TOF) reached 5000 under 4 atm H2 at 75 uC and

was 13 times higher than that given by the iridium catalyst. The

high activity of 1 was also shown in the hydrogenation of anisole 1;

it is the highest among the commercially available Rh catalysts and

the reported ones. Notably, 1 can be recovered simply by filtration

and reused ten times without activity loss.

The scope of arene hydrogenation with 1 was investigated with

various arenes at room temperature under 1 atm H2 (Table 2). Our

catalyst 1 was active for monosubstituted arenes such as toluene,

phenol, ethyl benzoate and 1-phenylethanol. Interestingly, the

hydrogenation of acetophenone produced 1-cyclohexylethanol as

the major product in 65% yield while cyclohexylmethyl ketone was

intact under the same conditions. Disubstituted arenes were also

hydrogenated successfully with stereoselectivities between 94:6 to

52:48. Naphthalene was hydrogenated selectively to tetralin or

decalin by controlling reaction time. Likewise, quinoline was

hydrogenated selectively to give tetrahydroquinoline in high yield.

In conclusion, we have developed a simple synthetic method for

a new rhodium catalyst that is recyclable and highly active in the

hydrogenation of various arenes under mild conditions. The highly

porous and fibrous matrix and the proper size of rhodium particles

in our catalyst should be factors for the observed high activity. We

are investigating the detailed effect of metal particle size and the

role of hydroxy groups of the matrix on catalytic activity.
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