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A linear template in the form of a bipyridine has been

developed and is shown to direct a single-crystal-to-single-

crystal [2 + 2] photodimerisation of a dicarboxylic acid.

The simplest way of transferring molecular information to form a

covalent bond is to use a code based on a two-letter alphabet.1 In

Nature, molecular information is transferred through a four-letter

alphabet involving nucleic acids (i.e. DNA), each letter being a

purine or pyrimidine base.2 In contrast, chemists have access to a

virtually infinite number of such molecular letters that can be used

to transfer information to code the formation of covalent bonds.1

In this context, chemists have recently utilised a two-letter code

to direct light-driven reactions via ditopic molecules that act as

linear templates.3 The templates preorganize olefins in the solid

state for [2 + 2] photodimerisations within hydrogen-bonded

molecular assemblies. The assemblies have involved a code wherein

templates that function as hydrogen-bond donors direct the

synthesis of products that bear hydrogen-bond acceptors.4

In principle, the code of an existing template-directed solid-state

synthesis can be reversed. In this context, we have described the

ability of the bifunctional hydrogen-bond donor 1,8-naphthalene-

dicarboxylic acid (1,8-nap) to direct a [2 + 2] photodimerisation of

the bifunctional hydrogen-bond acceptor trans-1,2-bis(4-pyridyl)-

ethylene (Scheme 1).5 Moreover, it occurred to us that the code of

this assembly process may be reversed, such that a bipyridine acts

as a template and a dicarboxylic acid acts as a reactant. In contrast

to the product obtained using 1,8-nap, the cyclobutane would be

decorated with carboxylic acid groups, which could make the

products readily amenable to postsynthetic transformations.6

Here, we report the application of code reversal to a template-

directed solid-state synthesis that involves an assembly process

based on pyridine and carboxylic acid groups. Specifically, we

demonstrate the ability of 2,3-bis(4-methylenethiopyridyl)naphtha-

lene (2,3-nap) to assemble fumaric acid (fum)7 into the finite

hydrogen-bonded molecular assembly 2(2,3-nap)?2(fum) for an

intermolecular [2 + 2] photodimerisation (Scheme 2). We reveal

that the reaction proceeds stereospecifically via a rare8 single-

crystal-to-single-crystal (SCSC) transformation and gives rctt-

1,2,3,4-tetracarboxylic acid (rctt-cbta) in up to 70% yield.

Our results are proof-of-principle that code reversal can be

applied to an existing template-directed solid-state synthesis and

suggest that the concept may be applied to future template-based

systems.3

Our choice of 2,3-nap as a template stems from a report

involving a related bipyridine that assembled two Ag(I) ions in the

solid state in close proximity.9 Specifically, reaction of the

4-thiopyridine framework with Ag(I) produced a dimer with two

Ag(I) ions juxtaposed at 3.41 Å, a distance that meets the criterion

of Schmidt for [2 + 2] photoreaction in a solid.10 Thus, we

anticipated that co-crystallization of 2,3-nap with fum would

produce the four-component assembly 2(2,3-nap)?2(fum) with two

diacids positioned, via O–H…N hydrogen bonds, for the

photoreaction.

University of Iowa Chemistry Department, 305 Chemistry Building,
Iowa City, IA, USA. E-mail: len-macgillivray@uiowa.edu;
Fax: +319-335-1270; Tel: +319-335-0563
{ Electronic supplementary information (ESI) available: Fig. S1. 1H NMR
spectrum of photoreacted 2(2,3-nap)?2(fum). See DOI: 10.1039/b510081j

Scheme 1

Scheme 2

COMMUNICATION www.rsc.org/chemcomm | ChemComm

5748 | Chem. Commun., 2005, 5748–5750 This journal is � The Royal Society of Chemistry 2005



When 2,3-nap was co-crystallized with fum (ratio: 1 : 1) from a

2 : 1 (v/v) MeCN : CH3OH solvent mixture, pale-yellow crystals

of 2(2,3-nap)?2(fum) formed in a period of 10 minutes. The

composition of 2(2,3-nap)?2(fum) was confirmed using 1H NMR

spectroscopy, as well as powder and single-crystal X-ray

diffraction.{
Perspectives of 2(2,3-nap)?2(fum) are shown in Fig. 1. As

anticipated, the components assembled to form a four-component

molecular assembly held together by four O–H…N hydrogen

bonds [N…O separations (Å): N(1)…O(1) 2.550(4), N(2)…O(3)

2.584(4)] (Fig. 1a). The two 4-pyridyl groups adopt a syn§ and

cofacial orientation (dihedral angle: 1.1u) while the diacids lie

stacked in a face-to-face geometry. The carbon–carbon double

(CLC) bonds of the diacids lie approximately parallel and

separated by 3.84 Å. This arrangement conforms to the criteria

of Schmidt for a [2 + 2] photoreaction in a solid.10 CLC bonds of

nearest-neighbour assemblies lie offset and separated by 8.97 Å

(Fig. 1b). This means the olefins of the hydrogen-bonded complex

are the sole CLC bonds arranged for reaction.

Ultraviolet (UV) irradiation of a powdered crystalline sample of

2(2,3-nap)?2(fum) using 300 nm light (Rayonet reactor) for 10 days

produced rctt-cbta, stereospecifically, in 70% yield. The formation

of the photoproduct was established via 1H NMR spectroscopy

(singlet 3.43 ppm; solvent: DMSO-d6).
7 Optical microscopy also

revealed that single crystals within the powdered solid maintained

transparency during the photoreaction, which suggested that the

reaction proceeded via a SCSC transformation.8 To test this

hypothesis, single crystals of 2(2,3-nap)?2(fum) were irradiated

using 300 nm light for a period of 3 days. Indeed, a single-crystal

X-ray analysis of 2(2,3-nap)?2(fum)" confirmed that the photo-

reaction proceeded via a partial8a SCSC transformation in which

rctt-cbta was generated to a maximum of 36% yield. Similar to the

reactants, the photoproduct interacts with the bipyridine template

via four O–H…N forces [N…O separations (Å): N(1)…O(1)

2.52(1), N(2)…O(3) 2.86(2)] (Fig. 2).

It is important to note13 that a single-crystal X-ray diffraction

study of pure 2,3-nap (i.e. in the absence of fum)I reveals that the

bipyridine adopts an anti conformation§ in which the 4-pyridyl

units lie splayed from each other (dihedral angle: 82.7u) (Fig. 3).

Molecular modelling11 demonstrates that the splayed conforma-

tion (Fig. 3a) is 56 kJ mol21 lower in energy than the cofacial

conformation of 2(2,3-nap)?2(fum) (Fig. 3b). Although this

difference in energy may be attributed to the O–H…N hydrogen

bonds of 2(2,3-nap)?2(fum),12 it is likely that structure effects of

close packing also play a role in determining the conformation of

the thiopyridine.13 Studies are underway to identify those factors

that determine the conformation of the bipyridine framework and

its ability to direct the [2 + 2] photoreaction in a solid.

In summary, we have employed principles of supramolecular

synthesis and molecular self-assembly to reverse the code of a

template-directed solid-state synthesis.5 We believe that such code

reversal expands the scope of employing linear templates to direct

solid-state reactivity and may be used to decorate products

obtained from the solid state with functional groups of synthetic
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V 5 924.5(3) Å3, Z 5 2, R 5 0.046 for 2894 reflections with Inet . 2s(I).
CCDC 277442. For crystallographic data in CIF or other electronic format
see DOI: 10.1039/b510081j

1 S. N. Rodin and S. Ohno, Proc. Natl. Acad. Sci. USA, 1997, 94, 5183.
2 M. Levy and S. L. Miller, Proc. Natl. Acad. Sci. USA, 1998, 95, 7933.
3 (a) A. Natarajan, J. T. Mague, K. Venkatesan and V. Ramamurthy,

Org. Lett., 2005, 7, 1895; (b) S. Hirano, S. Toyota and F. Toda, Chem.
Commun., 2005, 634; (c) T. Caronna, R. Liantonio, T. A. Logothetis,
P. Metrangolo, T. Pilati and G. Resnati, J. Am. Chem. Soc., 2004, 126,
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