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5-Aryl-2(5H)-furanones can be synthesized by the Rh-catalyzed

reactions of arylboronic acids with internal alkynes under a CO

atmosphere.

Since Hayashi et al. reported the first Rh-catalyzed addition of

aryl- and alkenylboronic acids to a,b-unsaturated ketones,1 the

Rh-catalyzed addition of organoboron reagents to various

unsaturated systems has become increasingly popular as a method

of constructing C–C bonds. Organoboron reagents readily

undergo transmetallation with Rh to form arylrhodium(I) species

that are capable of inducing the nucleophilic arylation of various

electrophilic sites.1,2 It was also shown recently that the

Rh-catalyzed reaction of arylboronic acids with terminal a,b-

unsaturated ketones in a CO atmosphere yielded 1,4-diketones.3

In this paper, we present another example of the Rh-catalyzed

reaction of arylboronic acids: a reaction of arylboronic acids

with alkynes under a CO atmosphere to yield 2(5H)-furanones

(2-butenolides).

Carbonylation of a phenylboronic acid and diphenyl acetylene

mixture (in the ratio 3 : 1) in the presence of [RhCl(COD)]2 (3%

Rh) in dioxane solvent under 20 atm CO pressure at 120 uC for

16 h yielded 3,4,5-triphenylfuran-2(5H)-one (3a) as the major

product, in addition to small amounts of 2,3-diphenyl-1H-inden-1-

one (4a), 2,3-dihydro-2,3-diphenylinden-1-one (5a), and the Z- and

E-stereoisomers of 1,2,3-triphenylprop-2-ene-1-one (6a) carbonyla-

tion products (Scheme 1) (Table 1, entry 1).{
A direct carbonylation product of phenylboronic acid, benzal-

dehyde, was also produced by the reaction in significant amounts

(45 mol% on the basis of the initial phenylboronic acid quantity).

Addition of PPh3 ligand or NEt3 base to the reaction medium

significantly reduced the formation of 3a product (Table 1, entries

2 and 3). The reaction was observed to proceed less selectively in a

dioxane–water (9 : 1) mixture (Table 1, entry 4). The presence of

water increased the formation of 4a, 5a and 6a products, while

formation of 3a was greatly reduced. Use of a pre-dried dioxane

solvent (dried over the molecular sieve 4A) lessened the formation

of benzaldehyde and 6a to trace amounts (Table 1, entry 5).

However, the presence of 1 g of the molecular sieve 4A in the

reaction medium appeared to be detrimental to the efficiency and

selectivity of the process (Table 1, entry 6).

We postulate here a sequential insertion of CO–alkyne–CO

leading to the formation of 2(5H)-furanones (Scheme 2): It is

generally accepted that an arylrhodium(I) species (A) is formed by

the transmetallation of Rh(I) compounds with organoborons.2 The

arylrhodium(I) could then insert into CO to give an

aroylrhodium(I) species (B), which then undergoes a 1,2-addition

to the carbon–carbon triple bond. Insertion of the resulting b-aroyl

alkenylrhodium(I) complex (C) into CO, followed by a ring

closure, could form a s-furanoyl complex (D). Displacement of

Rh from the cyclic complex by protonation leads to a 5-aryl-

2(5H)-furanone molecule (3).4 The source of the proton should be

mainly the arylboronic acid itself and its decomposition products.

The enhanced formation of benzaldehyde and other side

products in moist dioxane could arise from a promoted hydrogen

transfer in the form of H+ or from a water-gas shift reaction.

The optimum reaction temperature was determined to be 80 uC
(Table 1, entries 7 and 8). The formation of by-products was

greatly reduced at this temperature. However, no activity was

observed at 60 uC in dioxane solvent. Decreasing the Rh

concentration to 1 mol% on the basis of alkyne reduced the

formation of 3a (Table 1, entry 9).

The reaction was more efficient for the formation of 3a when

performed in dry toluene and the formation of other side products

were minimized (Table 1, entry 10). Compared to dioxane, the

smaller moisture content of toluene and its water immiscible

nature is probably a significant factor in the diminution of the side

reactions. The reaction also proceeded successfully in the case of a

lower Rh concentration of 1% (Table 1, entry 11). Furthermore,

the catalyst loading could also be lowered to 0.3% Rh with only a

small sacrifice in the product formation (Table 1, entry 12). In

contrast to the reaction in dioxane, performing the reaction at

60 uC afforded a moderate 3a yield (Table 1, entry 13). The

method does not require large excesses of boronic acids, since the

reaction was also remarkably effective at a phenylboronic acid :

diphenyl acetylene ratio of 1.2 (Table 1, entry 14).

The synthesis of furan-2(5H)-ones (2-butenolides) are of great

interest since some derivatives of these compounds occur naturally

and possess significant biological activity.5 Numerous transition
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Scheme 1 Rhodium(I)-catalyzed carbonylative addition of phenylboro-

nic acid to diphenylacetylene.
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metal-catalyzed methods have been exploited for the synthesis of

multi-functional lactones. These methods usually involve carbo-

nylative or non-carbonylative cyclization of unsaturated reagents

functionalized by hydroxyl or carboxyl groups and the cyclo-

carbonylation of acetylenes.6 The former methods usually suffer

from the scarcity of the starting organic reagents, which require

complicated synthetic routes. In contrast, alkynes are more readily

available reagents.

There are only a few reports on the carbonylative synthesis of

5-aryl-substituted furanones in the literature. The Pd(II)-catalyzed

cyclocarbonylation of 3-aryl-1-propynes and iodoarenes or acyl

chlorides, in the presence of Pd(OAc)2 (5 mol%), PPh3 ligand and

Et3N base under y20–80 atm CO pressure, led to fair-to-good

yields of E-3-arylbutenolides.7 The Rh-catalyzed cyclohydrocar-

bonylation of a-keto alkynes4c and Ru-catalyzed cyclocarbonyla-

tion of allenyl alcohols8 yielded related multi-functional lactones.

Negishi et al. employed two carbonylative methods in the

synthesis of 5-arylated furanones.9 Good yields were obtained

via carbonylation of Z-b-iodoenones in the presence of

PdCl2(PPh3)2 catalyst and Et3N base at 100–140 uC, whereas a

more direct method, the Pd-catalyzed carbonylative addition of

aryl iodides to internal alkynes, proceeded less effectively, giving

fair-to-moderate yields.

Our methodology was well applicable to para-substituted

arylboronic acids (Table 2, entries 2–5) under the optimized

conditions given above. Electron rich arylboronic acids were

sufficiently reactive with diphenyl acetylene (Table 2, entries 2 and

3). Modest furanone product was recovered with an electron

deficient arylboronic acid, 4-(trifluoromethyl)phenylboronic acid,

at a Rh concentration of 1% (Table 2, entry 4), probably due to its

poor ability to insert carbon monoxide. However, a higher yield

for the corresponding furanone product succeeded at a Rh

concentration of 3% (Table 2, entry 5).

ortho-Tolylboronic acid failed in the carbonylative addition to

diphenyl acetylene, probably owing to steric reasons. The alkyne

conversion was about 50% with ortho-tolylboronic acid, and the

reaction yielded 1-methyl-2-((E)-1,2-diphenylvinyl)benzene as the

primary arylation product. It seems that although arylrhodium(I)

species are capable of insertion into alkynes, the ortho-substituted

aroylrhodium(I) intermediate was not reactive enough for the

1,2-addition to the carbon–carbon triple bond.

As an alkyl-substituted acetylene, 4-octyne also displayed high

activity, providing a high furanone yield (Table 2, entry 6).

Table 1 Rhodium(I)-catalyzed reaction of phenylboronic acid and diphenyl acetylene under CO pressurea

Entry Solvent Rh (%) 2a : 1a T/uC Conversion (%) 3a (%)b 4a(%)b 5a(%)b 6a(%)b

1 Dioxane 3 3 120 .99 70 5 15 11
2 Dioxanec 3 3 120 .99 44 15 15 ,1
3 Dioxaned 3 3 120 .99 39 7 7 ,1
4 Dioxane–H2O (9 : 1) 3 3 120 .99 39 11 24 20
5 Dioxanee 3 3 120 .99 74 4 9 ,1
6 Dioxanee,,f 3 3 120 .99 43 9 16 ,1
7 Dioxanee 3 3 100 .99 80 2 5 ,1
8 Dioxanee 3 3 80 .99 86 2 3 1
9 Dioxanee 1 3 80 88 63 2 4 1
10 Toluenee 3 3 80 .99 90 ,1 ,1 ,1
11 Toluenee 1 3 80 .99 85 1 ,1 ,1
12 Toluenee 0.3 3 80 95 81 2 1 ,1
13 Toluenee 1 3 60 63 43 ,1 ,1 ,1
14 Toluenee 1 1.2 80 .99 89 (78) 2 1 ,1

a Reaction conditions: 1 mmol 1a, 10 mL solvent, 20 atm CO, 16 h. b GC yield, isolated yield is given within parentheses. c In the presence of
0.06 equiv. PPh3. d In the presence of 2 mmol NEt3. e Dried over molecular sieve 4A. f In the presence of 1 g of molecular sieve 4A.

Scheme 2 Proposed mechanism for the carbonylative addition of

boronic acids to alkynes.

Table 2 Rhodium(I)-catalyzed reaction of arylboronic acid and
alkynes under CO pressure

Entry R1 R2 Isolated yield (%)

1 Ph H 78 (3a)
2 Ph CH3 77 (3b)
3 Ph OCH3 82 (3c)
4 Ph CF3 40, 47 (3d)
5 Ph CF3 93a (3d)
6 n-C3H7 H 80 (3e)

a With 3 mol% Rh, GC yield.
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However, the method was unsuccessful with a terminal alkyne,

phenyl acetylene, even though no acetylene substrate could be

recovered at the end of the reaction. Here, the propensity of the

terminal alkyne to undergo polymerization might have disfavored

the carbonylation pathway.

In summary, the methodology established in this study proposes

a relatively mild and simple way for the synthesis of 5-aryl

substituted 2(5H)-furanones (2-butenolides). The application of

the process to a variety of alkyne and organoboron reagents for

the selective formation of other products, given in Scheme 1, and

for other unsaturated systems, is under way to expand the scope of

the methodology.

Notes and references

{ Representative conditions for the synthesis of 3a (conditions of Table 1,
entry 14): A mixture of alkyne (1 mmol), arylboronic acid (1 mmol),
[RhCl(COD)]2 (0.005 mmol, 1 mol% Rh) and 10 mL toluene (pre-dried)
was added into a 50 mL stainless steel autoclave with a glass insert tube.
The sealed autoclave was then evacuated and purged twice successively
with 10 atm CO. Subsequently, the reactor was pressurized to 20 atm with
CO and the mixture stirred magnetically in a pre-heated oil bath. After
cooling, the reaction mixture was recovered with ethyl acetate and extracted
with a brine solution. The products were analyzed by GC and GC-MS and
isolated by column chromatography.
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