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Synthesis of luminescent heterometallic bis-lanthanide complexes via
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A modular synthetic method for the differential incorporation
of two lanthanide ions into a single molecular scaffold is
reported; the mixed bimetallic Tb/Eu complex displays an
interesting solvent polarity-dependent ratiometric luminescence.

The utility of lanthanide chelates as luminescent probes and
magnetic resonance (MR) contrast agents in biological systems is
well established.! The sharp emission bands of Tb** and Eu®*
occur in a useful wavelength domain (500-700 nm) and often have
lifetimes in the order of a few milliseconds. Although direct
excitation of the metal center leads to forbidden transitions,
sensitization via energy transfer from an appended “antenna”
occurs readily with a variety of organic chromophores, including
the aromatic amino acids tyrosine and tryptophan.? The highly
paramagnetic Gd** ion is used frequently in MR imaging
applications owing to its ability to provide image contrast by
decreasing the 7 relaxation time of nearby water molecules.®
Responsive lanthanide probes capable of sensing analyte binding
or enzymatic activity have been developed for both the
luminescent* and magnetic modes.’

The toxicity of lanthanide aqua ions makes their residence in a
soluble chelate obligatory for biological applications. In addition,
inner sphere water molecules can be detrimental to Tb** and Eu**
luminescence quantum efficiency due to the strong coupling of
O-H vibrations. Fulfilment of the high coordination requirements
(7-9) of the lanthanides is typically accomplished using the water-
soluble polyaminocarboxylates 1,4,7,10-tetraazacyclododecane-
N,N',N',N"-tetraacetic acid (DOTA) and 1,1,4,7,7-diethylenetri-
amine pentaacetic acid (DTPA),® although several other motifs
have been studied.” As a result of their popularity, several methods
for the preparation of DOTA and DTPA bioconjugates are
available.®

The incorporation of two different lanthanide ions into a single
probe molecule may afford interesting properties, in either a dual-
emissive (Tb®" and Eu®) or bimodal (Eu’*/Tb*" and Gd**)
context.”” Although several lanthanide-containing heterometallic
complexes have been prepared by exploiting differences in ligand
preference between lanthanides and other transition metals,”>” the
minute differences in coordination behavior'® across the lantha-
nide period—particularly the immediate neighbors Eu**, Gd**
and Tb**—severely limit the synthesis of heterometallic bis-
lanthanide complexes. To the best of our knowledge, there is only
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one example of a discretely synthesized heterometallic complex
with two different lanthanide ions,!' though other complexes
containing two different lanthanide ions have been prepared and
studied as components of statistical mixtures.”>'2

As part of a broad program aimed at sensing chemical and
enzymatic events with fluorescent'® and luminescent' probes, we
wanted to develop a modular synthetic strategy for the differential
incorporation of two lanthanide ions into a single molecular
scaffold, preferably using the stable, soluble, and readily
bioconjugatable DOTA and DTPA chelates. Although the two
chelates are almost indistinguishable thermodynamically,'®!> only
the acyclic DTPA chelate is prone to kinetic dissociation.”'*!¢ We
postulated that the sequential, differential complexation of a
molecule containing both DOTA and DTPA chelates could be
accomplished by capitalizing on this difference in decomplexation
rates (Fig. 1). Specifically, treatment of DOTA/DTPA bis-chelate 1
with an excess of Lna>" should result in homobimetallic complex
2, which could be prompted to undergo selective kinetic
dissociation (e.g. acid-promoted demetallation) to give the
corresponding monometallic species 3. Further complexation of
this complex with Lng®" should yield the pure heterobimetallic
complex 4. A conceptually similar approach has been used
elegantly by Horrocks, Jr. et al to study the distances between
calcium binding sites in proteins.'” The proposed sequential,
differential metallation may represent a more general approach
than a previously reported method,'" since it obviates the need to
couple metallated fragments.

The branched tetrapeptide-based DOTA/DTPA bis-chelate 5
was prepared via standard solid phase peptide synthesis on Rink
Amide AM resin using the orthogonally-protected diamino acid
Fmoc-Dpr(Mtt)-OH for the selective introduction of the
DOTA('Bu); and DTPA(‘Bu), units (Scheme 1). After cleavage
and global deprotection, the crude peptide 5 was purified by
reverse phase HPLC (RP-HPLC) and complexed with excess Tb**
in pH 5 triethylammonium acetate buffer. When analyzed by
RP-HPLC using a H,O/MeCN eluent system buffered with 0.1%
TFA, the crude mixture contained a single major peak, which was
isolated by preparative RP-HPLC and identified by mass
spectrometry as the mono-Tb** species 6, containing only a trace
amount of the corresponding bis-Tb** species. The TFA-
promoted dissociation of Tb:DTPA complexes during preparative
HPLC has been noted by others*” and found by us to be nearly
quantitative. Following the isolation of 6, complexation with Eu**
or Gd** took place quantitatively in unbuffered aqueous media;
the resulting heterobimetallic complexes 7 and 8 could be used
directly for photophysical measurements.® This simple protocol
permits the rational design and synthesis of heterobimetallic
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Fig. 1 Schematic representation of the sequential, differential metallation
of a DOTA/DPTA bis-chelate with two different lanthanide ions (Lna**
and Lng*").

complexes containing any pair of lanthanide metals, making
available new probes and bioconjugates with potentially interesting
properties and applications.

The steady state emission spectra of 6, 7 and 8 in water are
shown in Fig. 2a. As expected, a portion of the energy absorbed by

a. Fmoc-L-Trp(Boc)-OH

TBTU, HOBt, DIEA mit—H

a. 20% piperidine/DMF

the tryptophan residue is emitted as fluorescence (A = 390 nm)f
and a portion is transferred to the °D, state of Tb>* (E =
20 400 cm 1), resulting in sensitized luminescence (., = 487, 544,
585 and 620 nm) from the Tb:DOTA moiety. Although the
Tb:DOTA and EwDTPA chelates are most likely at similar
distances from the tryptophan sensitizer in 7, the triplet energy of
tryptophan is too high to efficiently populate the emissive *Dy, state
of Eu** (E =17 200 cm™ ") and no sensitized Eu** luminescence is
expected to be observed.!” However, careful comparison of 6 and
7 reveals a small shoulder at 613 nm in the spectrum of 7 but not in
the spectrum of 6. This emission corresponds to the Dy — 'F,
transition of Eu’*. This shoulder was more pronounced in
less polar solvents, such as fert-butanol (Fig. 2b). The luminescence
properties of 6 and 7 were compared in a series of alcohol
solvents, and the Eu** emission band increased at the expense of
Tb** emission as the polarity of the solvent was decreased,
allowing ratiometric measurement of the relative solvent polarity
(Fig. 2¢).

This polarity-sensitive emission could be the result of several
factors. The first is deactivation of the Tb** excited state via
energy transfer to Eu**, which, although it has limited precedent, is
known to be efficient.”” The second scenario involves ratiometric
proportioning of the tryptophan excited state energy directly to
Eu* in addition to Tb>"; a control compound containing only an
Eu** chelate and tryptophan exhibited similar solvent-dependent
sensitized luminescence, albeit significantly weaker.§ A third
possibility is direct excitation of the Eu®" chelate, but this has
been ruled out by control studies.§ The precise nature of this
ratiometric emission and its potential applications to polarity
sensing are under investigation. Since both Tb** and Eu™* have
long radiative lifetimes and luminesce at relatively long wave-
lengths, this is the first system that would provide a ratiometric
measurement where both components are outside of the frequency
as well as the time domain of cellular autofluorescence.

In summary, a novel synthetic route to heterometallic bis-
lanthanide complexes via sequential, differential metallation has
been presented. Complex 7, containing Tb** and Eu®*, exhibits
ratiometric luminescence as a function of solvent polarity and may
provide a useful platform for time-resolved polarity sensing.
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acknowledged for her intellectual and editorial support.

H
DTPA(t-Bu),~N

b. DOTA(t-Bu), o
S 0 H
b. 20% piperidine/DMF H TBTU, HOBt, DIEA TFA/TIS/H,0 [94:3:3
HZN/O Fmoc-”JﬁrN\:)L"/o DOTA(:-Bu),—ﬂ "\/'LH/Q 201 ]
¢. Fmoc-Dpr(Mtt)-OH o  *H c. TEA/TIS/DCM [1:5:94] o
et bl m d. DTPA(-Bu), 4
N TBTU, HOBt, DIEA ’,‘
Boé Boc
i H . H M =
DTPA-N " a. ThCl; (3 eq) DTPA-N o M*:DTPA-N o Eu™* (7)
H pH 5 0.IM TEAA H EuCly or GdCly H 3
Dc""“"":kll'hl\—)LNHz Tba‘:DOT‘A'HJ\ff"‘/‘LNHz — Tb*:DOTA-N N\_./!LNHZ Gd™ (8)
L 0 3 b. preparative RP-HPLC 0 3 [ TN
m MeCN/H,0 (0.1%TFA) 2,»@ }@
5 N 6 N N
Scheme 1 Synthesis of the branched tetrapeptide ligand DOTA-Dpr(DTPA)-TrpNH, (5) and its sequential, differential metallation, producing the

heterometallated bis-lanthanide complexes 7 and 8.
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Fig. 2 (a) Emission spectra of compounds 6, 7 and 8 in H,O. (b)
Emission spectra of 7 in H,O and in ferz-butanol. (c) The Eu/Tb emission

ratio dependence on solvent polarity of 6 and 7.
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