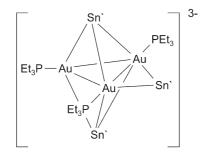
Formation of novel anionic gold-tin cluster compounds

Siegbert Hagen, Lars Wesemann* and Ingo Pantenburg^b

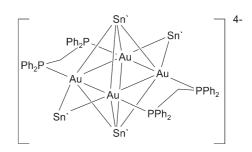

Received (in Cambridge, UK) 28th October 2004, Accepted 19th November 2004 First published as an Advance Article on the web 4th January 2005

DOI: 10.1039/b416472e

A straightforward procedure for the formation of mixed metal Au/Sn clusters is presented: reaction of the heteroborate $[SnB_{11}H_{11}]^2$ with phosphine gold electrophiles gave the clusters $[Bu_3NH]_3[\{(Et_3P)Au(SnB_{11}H_{11})\}_3]$ and $[Bu_3MeN]_4$ - $[\{(dppm)Au_2(SnB_{11}H_{11})\}_2\}_2]$, which were characterised by X-ray diffraction.

The syntheses, chemistry, and physical properties of homoatomic gold clusters have been a subject of continuing interest in recent years. 1,2 Furthermore a wide variety of high co-ordinated maingroup element-centered gold clusters have been published.³ Besides many other synthetic procedures, aggregation of gold atoms can be achieved, for example, by reduction of gold(I) complexes, photolysis of [(Ph₃P)AuN₃] or transfer of a LAu-fragment from [LAu]₃O⁺ to the respective main group element. 4-6 We are investigating the co-ordination abilities of the heteroborate stanna-closo-dodecaborate [SnB₁₁H₁₁]²⁻ which is accessible in amounts of around five grams following a two step procedure invented by Todd et al. in 1992.7 Recently we found that in reaction with the gold electrophile [(Ph₃P)AuCl] formation of a Au/Sn cluster $[\{(Ph_3P)Au(SnB_{11}H_{11})\}_2]^{2-}$ occurs and the tin nucleophile exhibits in solution as well as in the solid state for the first time a bridging coordination mode.8 In order to investigate a possible stereochemical influence on the tin-gold cluster formation reaction we started to vary the phosphine coligand. Thus, we report here on the reaction of the tin borate 1 with [(Et₃P)AuCl] (Scheme 1) and [(dppm)Au₂Cl₂]⁹ (Scheme 2) in CH₂Cl₂. A trinuclear gold cluster 2 was isolated in 71% yield from

3
$$[Bu_3NH]_2[SnB_{11}H_{11}] + 3 [(Et_3P)AuCl]$$
- 3 $[Bu_3NH]Cl$



 $[Bu_3NH]_3[\{(Et_3P)Au(SnB_{11}H_{11})\}_3]$ **2**

Scheme 1 Synthesis of the trinuclear gold cluster **2**. $Sn' = [SnB_{11}H_{11}]^{2-}$

the 1:1 reaction of the dianion 1 and [(Et₃P)AuCl]. The salt 2 was characterized by NMR spectroscopy and crystal structure analyses. In the ¹¹B NMR spectrum two signals at -6.8 and -14.2 ppm with an intensity ratio of 1:10 indicate substitution at the tin vertex of the heteroborate. 31P NMR spectra were recorded at room temperature and 193 K: one signal in the room temperature spectrum at 50.8 ppm with tin satellites $(^2J^{119/117}Sn-^{31}P = 232.8 \text{ Hz})$ exhibiting intensities equivalent for coupling with three tin atoms is a good indicator for the formation of the trianion $[\{(Et_3P)Au(SnB_{11}H_{11})\}_3]^{3-}$ showing dynamic behavior in solution. At 193 K, in accordance with the solid state structure, an AB₂ system was detected in the ³¹P NMR spectrum: the signal at 51.2 ppm (P1,2) exhibits tin satellites with the μ_2 (286.7 Hz) and μ_3 (55.2 Hz) bridging cluster ligands whereas the resonance at 52.6 ppm (P3) shows satellites (311.6 Hz) only with the triply bridging clusters. Single crystals suitable for X-ray structure analyses were obtained from CH₂Cl₂-hexane by slow diffusion. 2 crystallizes with one equivalent of dichloromethane in the triclinic space group $P\overline{1}$. The geometry of the metal core in the anion of 2 (Fig. 1) shows a surprising correspondence with the respective In-Au arrangements in [(dppe)2Au3In3Cl6(thf)3] and $[(dppe)_2Au][(dppe)_2Au_3In_3Br_7(thf)].^{11}$ In 2 the atoms P1-Au1-Au2-P2 show an arrangement close to linearity. This edge of the Au₃-triangle is μ_2 bridged by a tin ligand and exhibits the shortest Au-Au distance with 260.6(1) pm, whereas the other two Au-Au distances are much longer [289.4(1), 279.3(1) pm]. This bonding situation and the interatomic distances can be compared with the Au₂Sn₂ and Au₂Sn₃ core in the clusters $[\{(Ph_3P)Au(SnB_{11}H_{11})\}_2]^{2-}$ and $[(Ph_3P)_2Au_2(SnB_{11}H_{11})_3]^{4-}$.

4 [Bu₃MeN]₂[SnB₁₁H₁₁] + 2 [(dppm)Au₂Cl₂]
$$-4$$
 [Bu₃MeN]Cl

 $[Bu_3MeN]_4[\{(dppm)Au_2(SnB_{11}H_{11})_2\}_2]$

Scheme 2 Synthesis of a tetranuclear gold complex 3. $Sn' = [SnB_{11}H_{11}]^{2-}$, [dppm = bis(diphenylphosphino)methane].

^{*}lars.wesemann@uni-tuebingen.de

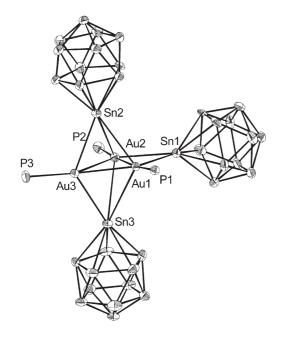


Fig. 1 Molecular structure of the anion of 2. Ethyl substituents at phosphorus have been omitted for reasons of clarity.

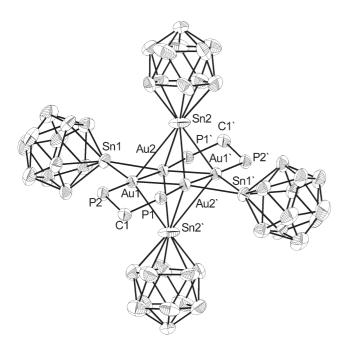


Fig. 2 Molecular structure of the anion of 3. Phenyl substituents at phosphorus have been omitted for reasons of clarity.

From the reaction with the dinuclear gold electrophile $[(dppm)Au_2Cl_2]$ (Scheme 2) a tetranuclear cluster 3 was isolated and identified by X-ray structure and elemental analyses. Due to low solubility of $[Bu_3MeN]_4[\{(dppm)Au_2(SnB_{11}H_{11})_2\}_2]$ it is impossible to detect any NMR signals in solution. However crystals were grown from CH_2Cl_2 and the geometry of the anion of 3 is shown in Fig. 2. The tetrannion lies on a center of symmetry and shows a rectangle for the four gold atoms. Bridged by the heteroborate the Aul-Au2 edge is much shorter [262.17(4) pm] than the chelated unit Aul-Au2' [284.75(5) pm]. The borate

clusters coordinate in two different modes on the Au₄-rectangle: the known μ_2 -bridging mode and a μ_4 -co-ordination with three shorter interatomic distances [Sn2–Au2 312.41(8), Sn2–Au1' 283.98(8), Sn2–Au2' 301.64(6) pm] and one relatively long contact [Sn2–Au1 330.41(8) pm]. Interestingly, the geometry of the heavy atoms Sn and Au in 3 is closely related to the arrangement of the copper and iodine atoms in [{(dppm)Cu_2I_2}_2]. ^{13} So far complexes with Au–Sn contacts are rare and a tin ligand for systematic gold cluster formation is not known. 14

In conclusion, the heteroborate $[SnB_{11}H_{11}]^{2-}$ is a new ligand for gold cluster formation. Bridging an Au–Au edge a short interatomic distance around 260 pm results.

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Siegbert Hagen, Lars Wesemann* and Ingo Pantenburg

^aInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany.

E-mail: lars.wesemann@uni-tuebingen.de; Fax: +49 7071 295306

^bInstitut für Anorganische Chemie der Universität zu Köln, Greinstrasse 6, D-50939, Köln, Germany

Notes and references

- (a) H. Schmidbaur, Gold: Progress in Chemistry, Biochemistry and Technology, John Wiley & Sons, Chichester, 1999; (b) G. Schmid, Clusters and Colloids, VCH, Weinheim, 1994; (c) P. Braunstein, L. A. Oro and P. R. Raithby, Metal Clusters in Chemistry, Wiley-VCH, Weinheim, 1999.
- 2 (a) H. Schmidbaur, Chem. Soc. Rev., 1995, 24, 391; (b) V. W. W. Yam and K. K.-W. Lo, Chem. Soc. Rev., 1999, 28, 323.
- 3 (a) H. Schmidbaur, Gold Bull., 1990, 23, 11; (b) H. Schmidbaur, Pure Appl. Chem., 1993, 65, 691.
- 4 (a) C. E. Briant, K. P. Hall, A. C. Wheeler and D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1984, 248; (b) C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos and A. J. Welch, J. Chem. Soc., Chem. Commun., 1981, 201.
- 5 J. Strähle, J. Organomet. Chem., 1995, 488, 15.
- 6 (a) H. Beruda, E. Zeller and H. Schmidbaur, Chem. Ber., 1993, 126, 2037; (b) H. Schmidbaur, F. P. Gabbaï, A. Schier and J. Riede, Organometallics, 1995, 14, 4969; (c) K. Angermaier and H. Schmidbaur, Chem. Ber., 1995, 128, 817; (d) F. P. Gabbaï, A. Schier, J. Riede and H. Schmidbaur, Chem. Ber., 1997, 130, 222.
- 7 R. W. Chapman, J. G. Kester, K. Folting, W. E. Streib and L. J. Todd, *Inorg. Chem.*, 1992, 31, 979.
- 8 S. Hagen, I. Pantenburg, F. Weigend, C. Wickleder and L. Wesemann, Angew. Chem., Int. Ed., 2003, 42, 1501.
- H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orame and G. Huttner, Chem. Ber., 1977, 110, 1748.
- 10 A sample of 1a (124.3 mg, 0.20 mmol) was added to a dichloromethane solution (20 mL) of [(Et₃P)AuCl] (70.1 mg, 0.20 mmol) at room temperature. After stirring for 1 h the solvent was removed and the mixture was washed with water. The remaining solid was dried under vacuum and yellow crystals of 2 (106.5 mg, 71%) were obtained by slow diffusion of hexane into a dichloromethane solution of the reaction product. Anal. Calcd. for $C_{54}H_{162}Au_3B_{33}N_3P_3Sn_3$ (2250.6): 28.82 C, 7.26 H, 1.87 N, found: 28.65 C, 8.08 H, 2.04 N. ¹¹B NMR (64 MHz, CD₂Cl₂) δ –14.2 (B2–B11), –6.8 (B12). ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, 293 K) δ 50.8 (s, ²J ^{119/117}Sn–³¹P = 232.8 Hz); (193 K) δ 51.2 (s, ²J {^{119/117}Sn–³¹P = 286.7 Hz}), 52.6 (s, ²J ²C {^{119/117}Sn–³¹P = 286.7 Hz}), 52.6 (s, ²J {^{119/117}Sn–³¹P = 286.7 Hz}), 52.6 (s, 51.2 (s, ${}^{2}J$ { ${}^{119/117}$ Sn ${}^{-31}$ P = 55.2 Hz; SII = 1 = 2001. 2—3.7 { ${}^{2}J$ { ${}^{119/117}$ Sn ${}^{-31}$ P = 311.6 Hz}). X-ray crystal structure analysis of 2: crystal data for $C_{54}H_{162}Au_3B_{33}N_3P_3Sn_3$ CH_2Cl_2 , M=2335.40, triclinic, space group $P\bar{1}$ (No. 2), a = 1568.5(1), b = 1671.4(1), c = 2181.3(2) pm, $\alpha = 100.47(1), \beta = 97.73(1), \gamma = 116.27(1)^{\circ}, V = 4.8901(7) \text{ nm}^3$ $\rho_{\text{calc}} = 1.586 \text{ g cm}^{-3}, \ \mu = 5.375 \text{ mm}^{-1}, \ Z = 2, \ \lambda = 71.073 \text{ pm},$ T = 120 K, 61516 reflections collected, 18924 independent ($R_{\text{int}} = 0.097$) and 11114 observed reflections $[I > 2\sigma(I)]$, 923 refined parameters, $R_1 = 0.041$, $wR_2 = 0.080$, all data $R_1 = 0.085$, $wR_2 = 0.089$. CCDC 253768. See http://www.rsc.org/suppdata/cc/b4/b416472e/ for crystallographic data in .cif or other electronic format.

- 11 (a) F. P. Gabbai, S.-C. Chung, A. Schier, S. Krüger, N. Rösch and H. Schmidbaur, *Inorg. Chem.*, 1997, 36, 5699; (b) F. P. Gabbai, A. Schier, J. Riede and H. Schmidbaur, *Inorg. Chem.*, 1995, 34, 3855
- 12 A sample of **1b** (129.9 mg, 0.20 mmol) was added to a dichloromethane solution (20 mL) of [(dppm)Au₂Cl₂] (84.9 mg, 0.10 mmol) at room temperature. After stirring for 1 h the solvent was removed and the mixture was washed with water. The remaining solid was dried under vacuum and yellow crystals of **3** (131 mg, 39%) were obtained by slow diffusion of hexane into a dichloromethane solution of the reaction product. Anal. Calcd. for C₁₀₂H₂₀₈Au₄B₄₄N₄P₄Sn₄ (3353.1): 36.54 C, 6.25 H, 1.67 N, found: 36.15 C, 6.23 H, 1.52 N. Crystal data of C₁₀₂H₂₀₈Au₄B₄₄N₄P₄Sn₄, M = 3352.87, triclinic, space group $P\bar{1}$ (No. 2), a = 1559.3(1), b = 1558.9(1), c = 1748.4(2) pm, α = 68.08(1), β = 64.03(1), γ = 74.25(1)°, V = 3.5147(5) nm³, ρ_{cak} = 1.584 g cm⁻³, μ = 4.944 mm⁻¹, Z = 1, λ = 71.073 pm, T = 160 K, 54953 reflections collected, 15436 independent (R_{int} = 0.067) and 9957 observed
- reflections $[I>2\sigma(I)]$, 593 refined parameters, $R_1=0.044$, $wR_2=0.098$, all data $R_1=0.075$, $wR_2=0.106$. CCDC 253769. See http://www.rsc.org/suppdata/cc/b4/b416472e/ for crystallographic data in .cif or other electronic format.
- N. Marisch, G. Nardin and L. Randaccio, J. Am. Chem. Soc., 1973, 95, 4053.
- 14 (a) D. M. Mingos, H. R. Powell and T. L. Stolberg, Transition Met. Chem., 1992, 17, 334; (b) Z. Demidowicz, R. L. Johnston, J. C. Machell, D. M. P. Mingos and I. D. Williams, J. Chem. Soc., Dalton Trans., 1988, 1751; (c) W. Clegg, Acta Crystallogr., Sect. B, 1978, 34, 278; (d) L. H. Gade, Eur. J. Inorg. Chem., 2002, 1257; (e) M. Contel, K. W. Hellmann, L. H. Gade, I. J. Scowen, M. McPartlin and M. Laguna, Inorg. Chem., 1996, 35, 3713; (f) B. Findeis, M. Contel, L. H. Gade, M. Laguna, M. C. Gimeno, I. J. Scowen and M. McPartlin, Inorg. Chem., 1997, 36, 2386; (g) D. M. Mingos, J. Chem. Soc., Dalton Trans., 1996, 561; (h) X.-Y. Liu, V. Riera, M. A. Ruiz, M. Lanfranchi and A. Tiripicchio, Organometallics, 2003, 22, 4500.