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Thermolyses of [(PMe2Ph)2PdB8H12] and [(PMe2Ph)2PtB8H12]

respectively yield eighteen-vertex [(PMe2Ph)2Pd2B16H20(PMe2-

Ph)2] and [(PMe2Ph)3Pt2B16H18(PMe2Ph)], which exhibit struc-

ture models for probable successive precursive intermediates

for the more condensed macropolyhedral metallaboranes

[(PMe2Ph)4Pt3B14H16], [(PMe2Ph)2Pt2B12H16] and [(PMe2Ph)2-

Pt2B16H15(C6H4Me)(PMe2Ph)] that have previously been

reported as products from [(PMe2Ph)2PdB8H12] thermolyses.

The rich and fertile chemistry of the polyhedral boranes is at

present most strongly manifested in the study and manipulation of

single-cluster species. The investigation of the manner in which

such single-cluster species may interact, either (a) covalently to

form intimately condensed ‘big-borane’ assemblies, often dubbed

‘macropolyhedral’ molecules,1 or (b) by weaker inter-molecular

binding modes to form supramolecular aggregations,2 constitute

two ways in which this single-cluster chemistry can be extended

beyond the experimental and sometimes intellectual hiatus

represented by the stable twelve-vertex single-cluster icosahedron.

An additional extension is (c) by the expansion of the twelve-

vertex icosahedron itself to give single clusters with more than

twelve vertices.3 Of these three areas, the generation of macro-

polyhedral boron-containing cluster species requires the intimate

covalent fusion of single clusters, but at present this has no

generally applicable generic synthetic route. Empirically, however,

it is found that several arachno nine-vertex species are prone to

homofusion to generate macropolyhedral molecules on mild

thermolysis.4–6 In this context, the arachno {B8Pt} system, as

represented by [(PMe2Ph)2PtB8H12] (schematic skeletal structure

I), is known to give a variety of interesting macropolyhedral

compounds upon simple thermolysis.7 Identified products include

[(PMe2Ph)2Pt2B12H18], [(PMe2Ph)PB16H18(PMe2Ph)], [(PMe2Ph)2-

Pt2B16H15(C6H4Me)(PMe2Ph)] and [(PMe2Ph)4Pt3B14H16], of

schematic cluster structures II, III, IV and V respectively,

The combined yield of these products is non-trivial,7 indicating

that their skeletal configurations constitute thermodynamic or

kinetic sinks among the complex of multi-step reaction co-

ordinates. However, the initial cluster geometry I is not traceable

in any of these products, and the constitutions of III and V

additionally indicate that intermolecular transfers of platinum and/

or boron atoms occur. Similar considerations apply to the related

[(PPh3)2PdB8H12] system, which, for example, gives

[(PPh3)4Pd4ClB16H17(PPh3)] of schematic structure VI.8 The

mechanisms associated with these systems are therefore of interest,

and further information is valuable: firstly, such information may

give clues to the mechanisms within this particular system, and,

secondly, it may then give clues for the ultimate design and

establishment of general transferable generic routes for intercluster

fusion.

In this context we report the isolation9 and characterisation10,11

of two new species. These are of formulation

[(PMe2Ph)2Pd2B16H20(PMe2Ph)2] [compound 1, Fig. 1 (upper),

schematic cluster structure VII A] from [(PMe2Ph)2PdB8H12]

thermal autofusion, and [(PMe2Ph)3Pt2B16H18(PMe2Ph)] [com-

pound 2, Fig. 1 (lower), schematic cluster structure VIII A] from

[(PMe2Ph)2PtB8H12] thermal autofusion. Obtainable crystals of 1

and 2 were small and required synchrotron X-radiation12

for sufficient diffraction intensity for molecular structure

determination.{
Their skeletal configurations are represented in schematic cluster

structures VII A and VIII A respectively. In each of these, the

skeletal pattern I of the {B8M} starting substrate is now readily

traced. The simple reaction stoichiometries of eqn. (1) and (2)

thence suggest that the structures may represent initial steps in the
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complex fusion-condensation processes that ultimately engender

skeletons such as II, III, IV, V and VI.

2 [(PMe2Ph)2PdB8H12] A
[(PMe2Ph)2Pd2B16H20(PMe2Ph)2] 1 + 2 H2

(1)

2 [(PMe2Ph)2PtB8H12] A
[(PMe2Ph)3Pt2B16H18(PMe2Ph)] 2 + 3 H2

(2)

Mechanistically, the formation of [(PMe2Ph)2Pd2B16H20-

(PMe2Ph)2] (schematic VII A) can be envisaged as the simple

confluence of two starting-material arachno {B8M} geometries

(schematic VII B below). As such it can be in turn envisaged as an

initial step of cluster fusion. This initially formed spiro-type

structure VII A is related to that invoked in the initial stages of

autofusion of the arachno nine-vertex thiaborane [SB8H12] to give

[S2B16H16] isomers.13 There is also a parallel with a similar spiro-

type connection established for neutral [S2B18H20].
14

The more condensed platinum compound [(PMe2Ph)3-

Pt2B16H18(PMe2Ph)] (schematic VIII A) hence could represent a

second step. Cluster fusion and subsequent condensation to

increase the intimacy of the fusion are oxidative processes. This is

implicit in eqn. (1) and (2), which show the loss of two and three

dihydrogen molecules respectively. Mechanistically, the basic

skeletal type VIII A derives from a simple skeletal closure from

a spiro-type structure VIII B related to that exhibited by the

{Pd2B16H20} species (schematic VII A). There are again some

parallels with thiaborane chemistry, in that the two-electron

oxidative closure from VIII B to VIII A together with the

concomitant subcluster swing resemble the characteristics of the

two-electron oxidative closure of the [S2B17H18]
2 anion to form

neutral S2B17H17.
15

In conclusion, it seems reasonable to postulate that condens-

ations such as VII B A VII A and VIII B A VIII A will typify

successive initial steps in at least one of the pathways that

ultimately lead to more severely modified species represented by

configurations II, III, IV, V and VI. The link between these two

initially formed {B16M2} frameworks and the more condensed and

rearranged skeletons is, however, not yet made. It is to be hoped

that the continued isolation of species from these and related

reaction systems will continue to give clues for the further

understanding of the overall mechanism. Any understanding here

will aid the development of generic cluster fusion routes.
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Notes and references

{ CCDC 198684 and 198685. See http://www.rsc.org/suppdata/cc/b4/
b419242g/ for crystallographic data in .cif or other electronic format.

Fig. 1 ORTEP-316 diagrams of the crystallographically determined10

cluster structures of (upper diagram) [(PMe2Ph)2Pd2B16H20(PMe2Ph)2]

(compound 1) (schematics VII) and (lower diagram) [(PMe2Ph)3-

Pt2B16H18(PMe2Ph)] (compound 2) (schematics VIII), with P-organyl

group atoms omitted for clarity; ellipsoid probability 70%. For 1,

unbridged palladium–boron distances are in the range 2.205(3)–

2.298(3) Å, and hydrogen-bridged Pd(6)–B(99) is 2.365(3) Å; the

palladium–phosphorus distances are 2.3364(7) and 2.3329(7) Å; B(5)–

P(5) is 1.919(3) Å , B(89)–P(89) is 1.916(3) Å, and interboron distances are

in the range 1.730(4)–1.882(5) Å; diagram and data are for one of four

similar but crystallographically independent molecules. For 2, platinum–

boron distances are in the range 2.204(4)–2.340(5) Å; Pt (9)–P(9a) is

2.319(1) Å, Pt (9)–P(9b) is 2.297(1) Å and Pt(6)–P(6) is 2.284(1), Å;

B(29)–P(29) is 1.918(4) Å and interboron distances are in the range

1.705(7)–1.883(7) Å.
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F. Hanousek, Collect. Czech. Chem. Commun., 1968, 33, 699;
J. Dobson, P. C. Keller and R. Schaeffer, Inorg. Chem., 1968, 7, 399;
G. B. Jacobsen, D. G. Meina, J. H. Morris, C. Thompson,
S. J. Andrews, D. Reed, A. J. Welch and D. F. Gaines, J. Chem.
Soc., Dalton Trans., 1985, 1645; D. F. Gaines, C. K. Nelson and
G. A. Steehler, J. Am. Chem. Soc., 1984, 106, 7266.

5 T. Jelı́nek, J. D. Kennedy and B. Štı́br, J. Chem. Soc., Chem. Commun.,
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c 5 33.0514(15) Å, a 5 84.051(2)u, b 5 83.8669(2)u, c 5 81.165(2)u,
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