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Novel functional polydipyrrole- and polydicarbazole

nanorods have been AAO template-synthesized from COOH-

dipyrrole/-dicarbazole monomers using Vapor Deposition and

Liquid Phase Polymerizations (VDP and LPP). They were

tested as insoluble supports for covalent DNA attachment and

hybridization.

Amongst various classes of nanomaterials, conducting polymers

(CPs)-based nanomaterials such as polymeric nanotubes/rods

have recently piqued scientific interest due to their potential

use in various biomedical applications.1–3 In general, CPs have

been (electro)chemically template-synthesized from simple non-

functional oxidizable monomers, such as pyrrole, aniline, and

thiophene within nanoporous membranes, resulting in solid

CPs-based nanorods and hollow nanotubules.1–3 If desired,

membrane dissolution can release monodispersed CPs-based

nanorods and/or nanotubules for further processing. Both

anodized aluminum oxide (AAO) and track-etched polyester

membranes have been used, since they contain a high density of

size-defined, well-separated, discrete nanopores as shape-defining

nanoreaction vessels.4–6 Astonishingly, the oxidative template-

synthesis polymerization of more sophisticated, oxidizable mono-

mers having chemical functionalities has never been reported.

Depending on monomer structure, the resulting CPs-based

nanotubes/rods should possess functional groups protruding from

surfaces. These groups may be made accessible within polymeric

matrices themselves for post-polymerization derivatizations.

In this work, we report the preparation of novel polymeric

CPs-based polycarboxylated functional nanorods that were

template-synthesized from dipyrrole (DPy) and dicarbazole

(DCb) monomers 37 and 4–68,9 (Scheme 1). These new DPy-

and DCb-precursors are bis-heterocyclic and mono-/bis-carboxy-

lated. DCb-monomers of type 4,8 that contained NH2-sensitive

pentafluorophenyl esters exchangeable by surface NH2 groups of

enzymes, have been electropolymerized onto Pt/Au microelec-

trodes.8 In addition, magnetically responsive nanocomposites of a

magnetite-pDPy/pDCb core-shell morphology were readily pre-

pared by chemical oxidation of a range of DPy-/DCb-monomers

of type 3–6 around nanosized magnetite particles.10 In all these

examples, (electro)chemically stable polymer deposits resulted

from a polymer reticulation caused by the innovative bis-

heterocyclic chemical design of monomers. It should be noted

that simple N-substituted mono carbazoles could not afford

electrochemically stable polycarbazole films but rather shorter

soluble tetrameric polycarbazole chains.11,12 Additionally, since

carbazoles are more difficult to (electro)chemically oxidize than

pyrroles, we identified ceric ammonium nitrate (CAN) as a unique

oxidant able to efficiently polymerize bis-heterocyclic DCb-

monomers around magnetite nanoparticles.10

The two COOH-containing DPy- and DCb-monomers 3 and 4

have been synthesized by condensing L-lysine 1 with 1,4-dimethoxy

tetrahydrofuran 2 using a modified Clauson–Kaas reaction7,8

(Scheme 1). The two C2-symmetrical bis-COOH DCb-monomers

5 and 6 were readily obtained in a short three-step synthesis.9,10 A

similar modified Clauson-Kaas reaction has been performed on

the protected L-a-benzyl glutamate, followed by DCC-

HOBt mediated diamidation of the resulting benzylated

pyrrole-/carbazole-glutamates using linkers L1,2. Subsequent

debenzylation (10% Pd/C, J v/v cyclohexene/i-PrOH) of protected

DPy-/DCb-intermediates cleanly afforded DPy- and DCb-

monomers 5 and 6 (32–33% overall yields).

Monomers DPy-3 and DCb-4 have been chemically poly-

merized within nanosized pores of AAO membranes (Whatman

International Ltd., Anodisc 25; Ø 5 21 mm, 3 membranes/

experiment, 60 mm thickness, 100 nm average pore size,

109 pores cm22 pore density) by vapor deposition (VDP,13,14

FeCl3 oxidant) and liquid phase (LPP,1,15 CAN oxidant)

polymerization techniques. Detailed experimental procedures for
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Scheme 1 Structures of DPy- and DCb-monomers 3 and 4–6.
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the preparation of pDPy-/pDCb-nanorods are described in the

ESI.{ The resulting polycarboxylated pDPy-/pDCb-nanorods are

new nanosized insoluble polymeric supports compatible for DNA

hybridizations. To the best of our knowledge, the preparation of

such functional CPs-based nanorods from chemically more

sophisticated COOH-containing DPy-/DCb-monomers, and their

further use in DNA hybridizations, have never been reported.

The FT-IR spectrum (Bomem MB 100 FT-IR spectrometer,

KBr pellet) of pDPy-nanorods, fabricated by the VDP method,

showed the characteristic large peak of a polycationic doped

p-conjugated polypyrrole system, e.g. the conjugated C–N stretch-

ing at 1384 cm21.16 The C–H and O–H (COOH function)

stretchings, respectively at [2853, 2930, 2960] and 3443 cm21,

further supported the formation of polycarboxylated

pDPy-nanorods.

Fig. 1A represents both SEM and TEM images of smooth and

uniform meniscus-ended pDPy-nanorods (SEM and TEM: JEOL

JSM-6700F Scanning Electron and JEOL EM-2000 EX II cast

onto silicon wafers and carbon-coated copper grids, respectively).

Combined SEM and TEM analyses unambiguously proved that

they are rather solid nanorods. Interestingly, simple unsubstituted

pyrrole produced only hollow nanotubes, under similar polymeri-

zation conditions. Most likely, this difference arises from the

bis-heterocyclic nature of DPy-monomer 3 that allowed a two-

dimensional reticulating polymer chain growth both along and

bent from the pore axis. The average diameter (155.0 nm), length

(1.70 mm), and aspect ratio (ca. 11) of pDPy(3)-nanorods were

calculated from 50 counted nanorods. The average length was far

from a full spanning through AAO membrane nanopores.

Since less volatile DCb-monomer 4 was freely soluble in

CH2Cl2, the more appropriate LPP technique has been used to

effect its oxidative polymerization in CAN-loaded AAO template

membranes.{
The FT-IR spectrum of purified pDCb(4)-nanorods had

characteristic vibration peaks of indoles in the range of 1630–

1540 cm21, and conjugated C–N–C stretchings at 1442 cm21. C–H

and O–H stretchings appeared at 2853, 2930 and 2960 cm21 and

3443 cm21 respectively. SEM and TEM pictures (Fig. 1B) showed

solid uniform pDCb-nanorods possessing rather smooth surfaces.

They were characterized by an average diameter of 132.8 nm

and length of 3.60 mm (50 counted nanorods, average aspect

ratio of ca. 27), again the length being far from the specified

membrane thickness. Interestingly, pDPy(3)-/pDCb(4)-nanorods

did not aggregate, most likely due to repulsive charge stabili-

zation (polycationic polymer skeleton and protruding anionic

carboxylates).

Similar attempts to prepare pDCb(5/6)-nanorods from DCb-

monomers 5 and 6 by LPP were not satisfactory due to monomer

insolubility in common organic solvents including CH2Cl2.

Nevertheless, slightly more vigorous VDP conditions than

those used for pDPy(3)-nanorods,{ were found successful, using

CAN-charged AAO template membranes.{ Resulting pDCb(5/6)-

nanorods were similarly characterized by FT-IR, SEM and TEM

microscopy analyses. FT-IR spectroscopy revealed characteristic

vibration peaks at 1640–1540, and 1473 cm21 (indole ring), at

1384 cm21 (conjugated C–N stretchings), at 1680 cm21 (N–H

stretchings), and at 3443 cm21 (O–H stretchings). In the case of

pDCb(6)-nanorods, additional characteristic peaks appeared for

symmetric C–O (–OCH2–) and C–H (ether group) stretchings

at 1130 cm21 and 2835–2955 cm21 respectively. SEM and

TEM images showed smooth surfaces of pDCb(5)- and

pDCb(6)-nanorods (Figs. 1C and 1D respectively). Their calcu-

lated average lengths (5.0 and 7.0 mm) and diameters (190.0 and

130.0 nm, 50 counted pDCb(5/6)-nanorods) resulted in high

average aspect ratios ca. 26 and 53, respectively.

The four polycarboxylated pDPy(3)- and pDCb(4–6)-nanorods

have been separately tested for DNA covalent immobilization and

hybridization using an HRP-based enzymatic amplifying system

(HRP: Horse Radish Peroxidase, Scheme 2 and ESI{). First an

amine-modified 20-mer oligonucleotide NH2-DNA H2N-

(CH2)12-
59GCACTGGGAGCATTGAGGCT (14.1 nmol), that

characterizes the 20210 mutation in the Human Factor II gene,17

has been covalently attached onto pDPy(3)- and pDCb(4–

6)-nanorods (600.0 mg) following COOH activation by the

water-soluble carbodiimide EDC (EDC: N9-(3-dimethylaminopro-

pyl)-N-ethyl-carbodiimide, 0.4 M MES buffer at pH 5.0, 2 h

incubation at 20 uC).18,19

After hybridization with the fluoresceine-labeled antisense 20-

mer oligonucleotide FITC-DNA (fluoresceine-59AGCCTCAAT-

GCTCCCAGTGC, 10 min, 60 uC, six parallel experiments, 50.0 mg

of nanorods per Elisa plate well/experiment), an anti-FITC HRP-

labeled mouse monoclonal antibody was added and incubated

(10 min, 20 uC). After addition of the HRP substrate

TMB (3,39,5,59-tetramethyl-benzidine, Aldrich), both pDPy- and

Fig. 1 A–D. SEM and TEM (inset) images of pDPy(3)-nanorods (A)

and of pDCb(4–6)-nanorods (B–D).

Scheme 2 DNA covalent attachment onto pDPy-/pDCb-nanorods and

hybridization.
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pDCb-immobilized amplifying enzymatic constructs were reacted

(5 min, 20 uC) before visible reading at 620 nm (Elisa Plate Reader

Anthos ht II, total binding TB, sextuple experiments). Similarly,

six parallel experiments that omitted the FITC-DNA complemen-

tary sequence allowed us to evaluate the nonspecific binding (NSB)

data that characterized the affinity of each tested pDPy(3)- and

pDCb(4–6)-nanorods (50.0 mg per Elisa plate well/experiment) to

physically adsorb the reporter anti-FITC HRP-labeled antibody.

Resulting averaged data (Fig. 2) clearly demonstrated that

pDPy(3)-/pDCb(4–6)-nanorods enabled covalent DNA immobili-

zation and hybridization although with variable efficiencies that

depended on pDPy-/pDCb-series of nanorods. Accordingly,

pDPy(3)-nanorods exhibited a very low affinity for the reporter

HRP-labeled antibody in the 8–10% range (low NSB). It resulted

in a high efficiency factor EF (EF 5 (TB-NSB)/NSB 5 8.0) for

these nanorods. On the contrary, more hydrophobic pDCb(4–

6)-nanorods disclosed poor to moderate EFs in a 0.6–2.1 range

due to much higher NSB signals. Further use of pDCb-nanorods

for the detection of DNA hybridization will require additional

passivation steps.

In conclusion, we have fabricated, for the first time, functional

polyCOOH-pDPy(3)-/pDCb(4–6)-nanorods by template-synthesis

using AAO membrane templates. Nanorod-supported DNA

hybridizations have been validated by an enzymatic HRP-based

amplifying system opening an interesting avenue toward DNA-

based self-assembly processes of polymeric nanorods for supra-

molecular biosensing assemblies.
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C. R. Martin, Science, 2002, 296, 2198–2200.
3 A. Huczko, Appl. Phys. A, 2000, 70, 365–376.
4 M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch,

J. Schilling, J. Choi and U. Gösele, Science, 2002, 296, 1997.
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