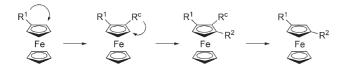
Stereoselective synthesis of chiral, non-racemic 1,2,3-tri- and 1,3-disubstituted ferrocene derivatives

Marianne Steurer, Karin Tiedl, Yaping Wang and Walter Weissensteiner*


Received (in Cambridge, UK) 22nd June 2005, Accepted 9th August 2005 First published as an Advance Article on the web 7th September 2005

DOI: 10.1039/b508761a

Chiral, non-racemic 1,2,3-trisubstituted ferrocene derivatives are accessible from monosubstituted ferrocenes through two sequential ortho-deprotonation reactions; removal of the central substituent gives 1,3-disubstituted ferrocenes.

Chiral non-racemic ferrocene derivatives have found broad application as ligands for homogeneous enantioselective catalysts.¹ In this respect, 1,2-disubstituted ferrocenes are mainly used but 1,1',2-tri- or 1,1',2,2'-tetrasubstituted ferrocenes are also employed. In general, ferrocenes with such substitution patterns are usually prepared from mono- or 1,1'-disubstituted precursors by stereoselective *ortho*-metallation reactions.² Interestingly, applications of chiral non-racemic 1,3-disubstituted ferrocenes are very rare and this might be due to the fact that suitable methods for the synthesis of such derivatives are lacking.3 Only recently, in the context of ferrocene-based pincer ligands, ⁴ Brown and co-workers reported a broadly applicable method for the synthesis of achiral or racemic 1,3-disubstituted ferrocene derivatives, with the key step of this reaction sequence being a selective meta-lithiation of ferrocenyl-tolyl sulfide.⁵ Attempts to carry out this reaction in an enantioselective manner have not yet been successful and, in addition, methods for separating the enantiomers of racemic mixtures are very limited.^{5,6} For these reasons we became interested in the development of general and preparatively useful methods for the synthesis of chiral, non-racemic 1,3-disubstituted ferrocenes.

In our search for suitable methods, we investigated the reaction sequence depicted in Scheme 1: starting from a suitable monosubstituted ferrocene derivative (Fc-R¹), 1,2,3-trisubstituted intermediates are built up in two steps, both of which involve ortho-deprotonation reactions. Subsequent removal of the central substituent (R^c) gives 1,3-disubstituted ferrocenes. R¹ can be chosen from a broad selection of ortho-directing groups^{1,2} but the central substituent R^c must be both ortho-directing and removable. Possible candidates for R^c are the halides (chloride⁷ and bromide⁸) as well as sulfinyl and sulfonyl groups.⁹ In our opinion bromide was best suited for this purpose and it was

Scheme 1 General reaction scheme for the synthesis of 1,2,3-tri- and 1,3disubstituted ferrocenes.

Universität Wien, Fakultät für Chemie, Währinger Straße 38, Wien, A-1090, Austria. E-mail: walter.weissensteiner@univie.ac.at

therefore tested in three reaction sequences in combination with substituents (R¹) 1-dimethylaminoethyl [CH(NMe₂)Me], the ephedrine derivative CH₂N(Me)CH(Me)CH(Ph)OMe and the p-tolylsulfinyl [4-CH₃C₆H₄S(O)] unit.

In the first reaction sequence $[R^1 = CH(NMe_2)Me$ and $R^{c} = Br (Scheme 2)$] commercially available (R)-N,N-(1-dimethylaminoethyl)ferrocene [Ugi's amine, (R)-1] was reacted using a literature procedure 10 with s-BuLi and F2BrCCBrF2 to give (R,S_p) -2 in 88% yield. In order to optimise the subsequent deprotonation step with respect to temperature and the amount of base, different conditions were applied to the reaction of (R, S_p) -2 with Li-TMP (TMP = 2,2,6,6-tetramethyl piperidine) as the base and ClSiMe₃ as the electrophile.

The use of these optimised conditions†and dimethylformamide as the electrophile gave aldehyde (R, R_p) -3 exclusively (82%). Reduction of this compound with LiAlH₄ gave alcohol (R, R_p) -4 in 90% yield and subsequent reaction with 2.5 equivalents of *n*-BuLi and H₂O resulted in the 1,3-disubstituted ferrocenyl aminoalcohol (R,S_p) -5 (88%). It is clear that a variety of analogous derivatives of

Scheme 2 Synthesis of 1,3-disubstituted ferrocenes; reaction sequence 1. (a) s-BuLi, Et₂O, 0 °C, 4 h; -78 °C, F₂BrCCBrF₂, THF, rt, 17 h, 88%; (b) Li-TMP, THF, -78 °C 30 min, -30 °C 3 h; DMF, 0 °C 16 h, 82%; (c) 0 °C, LiAlH₄, THF, rt, 16 h, 90%; (d) −78 °C, n-BuLi, 0 °C 30 min, H₂O, 88%; (e) HPPh₂, CH₂Cl₂, HBF₄, rt 16 h, 67%; (f) BH₃·THF, rt 16 h, 85%. TMP = 2,2,6,6-tetramethylpiperidine, DMF = N,N-dimethylformamide. Overall yield $1 \rightarrow 5$: 57%.

Scheme 3 Synthesis of 1,3-disubstituted ferrocenes; reaction sequence 2. (a) t-BuLi, pentane, -78 °C 1.5 h, -30 °C 2.5 h; $F_2BrCCBrF_2$, THF, -78 °C 30 min, rt 16 h, 87%; (b) Ac₂O, 150 °C 3 h, 79%; (c) K₂CO₃, MeOH, 45 °C 3.5 h, 96%; (d) 0 °C, t-Bu(Me)₂SiCl, imidazole, DMF, rt 17 h, 99%; (e) Li-TMP, THF, -78 °C 30 min, -30 °C 3 h; DMF, 0 °C 1 h, 79%; (f) 0 °C, LiAlH₄, THF, rt 16 h, 82%; (g) -78 °C, n-BuLi, 0 °C 30 min, H_2 O, 90%. TBDMS = t-butyldimethylsilyl. Overall yield $8 \rightarrow 15$: 38 %.

3, **4** and **5** can be accessed by either using different electrophiles in the *ortho*-deprotonation step of **2** or by functional group tranformation of **4** and **5** or their analogues. As an example, we synthesised a potential pincer ligand, the aminophosphine (R, S_p) -**6** (67%), as well as its bisborane complex (R, S_p) -**7** (85%).

The second reaction sequence $[R^1 = CH_2N(Me)CH(Me)-$ CH(Ph)OMe and $R^{c} = Br$ (Scheme 3)] starts from an O-methylephedrine-substituted ferrocene derivative and allows the synthesis of exclusively planar chiral, non-racemic 1,3disubstituted ferrocenes. Monosubstituted ferrocene derivative (1R,2S)-8, which is easily accessible from N-ferrocenylmethyl-N, N, N-trimethylammonium iodide and O-methylephedrine, ¹² was reacted with t-BuLi and F₂BrCCBrF₂ to give (1R,2S,R_p)-9 in 87% yield and 98% d.e. All attempts to selectively ortho-deprotonate bromide 9 led to product mixtures and, in an effort to overcome this problem, the O-methylephedrine unit was replaced by a tertbutyldimethylsilyl-protected hydroxyl group (Scheme 3, $9 \rightarrow 12$, 75%). 13 In this case, the use of the reaction conditions optimised for 2 enabled the selective transformation of bromide (R_n) -12 into aldehyde (S_p)-13 (79%) which, after reduction with LiAlH₄, gave alcohol (R_p)-14 (82%). Finally, reaction with n-BuLi and H₂O removed the bromide and gave the 1,3-disubstituted ferrocene derivative (S_n) -15 in 90% yield. In this case it is also expected that derivatives 14 and 15 (like 4 and 5) can serve as enantiopure starting materials for a number of related products-including pincer ligands.

In the third reaction sequence the use of bromide as the central substituent was combined with the *ortho*-directing *p*-tolylsulfinyl substituent [R¹ = 4-CH₃C₆H₄S(O) and R^c = Br (Scheme 4)]. Bromide (R, S_p)-17 was prepared by reacting *p*-tolyl-ferrocenyl sulfoxide¹⁴ (R)-16 with LDA and F₂BrCCBrF₂ (85%)¹⁵ and the product was subsequently reduced with sodium iodide and chlorotrimethylsilane to give sulfide (S_p)-18 (84%). As in the cases of 2 and 12, ferrocene derivative 18 could be selectively deprotonated adjacent to the bromide substituent and subsequent reaction with DMF gave aldehyde (S_p)-19 in 74% yield. Reduction with LiAlH₄ resulted in alcohol (S_p)-20, which on reaction with *n*-BuLi led to the desired 1,3-disubstituted ferrocene derivative

Scheme 4 Synthesis of 1,3-disubstituted ferrocenes; reaction sequence 3. (a) LDA, THF, -78 °C 3 h; F₂BrCCBrF₂, THF, -78 °C 30 min, rt 19 h, 85%; (b) NaI (6 equiv), Me₃SiCl (12 equiv), CH₃CN, rt 18 h, 84%; (c) Li-TMP, THF, -78 °C 30 min, -30 °C 3 h; DMF, 0 °C 1 h, 74%; (d) LiAlH₄, THF, 0 °C 1.5 h, 83%; (e) -78 °C, n-BuLi, 0 °C 30 min, H₂O, 92%. Overall yield $16 \rightarrow 21$: 40%.

 (R_p) -21 (92%). As recently reported for its racemate,⁵ 21 can easily be functionalised and can therefore serve as a valuable starting material for a variety of chiral, non-racemic 1,3-disubstituted ferrocene derivatives. This approach should also be applicable to compound 20 or analogues that are accessible from 18 with different electrophiles.

In summary we have demonstrated that chiral non-racemic 1-R¹,2-R^c,3-R²-trisubstituted ferrocenes can be synthesised in two steps from monosubstituted ferrocenes Fc-R¹ with both steps involving *ortho*-deprotonations. Particularly combinations of stereoselectively *ortho*-directing groups R¹ with bromide as the central substituent gave products with very high selectivity and in preparatively useful yields. Since bromide can easily be removed from 1-R¹,2-Br,3-R²-trisubstituted ferrocenes, chiral non-racemic 1-R¹,3-R²-disubstituted ferrocenes become accessible *via* this route. We assume that our method can be further extended with respect to both the *ortho*-directing groups R¹ and the electrophiles used in order to introduce substituent R². Furthermore, functional group variations of R¹ and R² as well as of bromide will make easily available a variety of 1,2,3-tri- and 1,3-disubstituted ferrocenes for new applications.

The authors thank Solvias AG for a donation of Ugi's amine and the undergraduate students Martin Fritzenwanker, Christian Kowol, Katrin Prantz, Michael Reithofer and Raffael Schuecker for their enthusiastic help in synthesising a variety of ferrocene derivatives.

Notes and references

† Typical procedure for the *ortho*-deprotonation of (R,S_p) -2: The reaction was carried out under an argon atmosphere using standard vacuum line and Schlenk techniques. To a cooled (-78 °C) degassed solution of (R,S_p) -2 (500 mg, 1.488 mmol) in THF (5 mL) was added dropwise a solution of Li-TMP in THF (0.7 M, 4.25 mL, 2.976 mmol). The reaction mixture was stirred for 30 min at -78 °C followed by 3 h at -30 °C. The reaction temperature was lowered to -78 °C and dimethylformamide (350 μ L, 4.516 mmol) was added. The temperature was raised to 0 °C and stirring continued for 16 h at this temperature. The reaction was quenched with saturated aqueous Na₂CO₃ (15 mL) and diethyl ether was added. The phases were separated and the aqueous phase was extracted 3 times with

diethyl ether. The combined organic phases were washed with brine, dried (MgSO₄) and the solvents removed under reduced pressure. The residue was purified by column chromatography on alumina. A mixture of petroleum ether (boiling range 69-72 °C), ethyl acetate and triethylamine (30 : 10 : 1) was used as the eluent to give product (R, R_p) -3 as a red oil (442 mg, 82%). Selected characterisation data. (R,R_p) -3: δ_H (400.1 MHz; CDCl₃; CHCl₃; ppm) 1.47 (3 H, d, J 6.9, CHCH₃), 2.17 (6 H, s, N(CH₃)₂), 3.87 (1 H, q, J 6.9, CHCH₃), 4.25 (5 H, s, Cp'), 4.61 (1 H, d, J 2.8, Cp-H4), 4.90 (1 H, d, J 2.8, Cp-H3), 10.22 (1 H, s, CHO); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; CDCl₃; ppm) 15.81 (CH₃), 41.04 (N(CH₃)₂), 55.65 (CH), 65.63 (Cp-C3), $69.59 \text{ (Cp-C4)}, 72.84 \text{ (Cp')}, 75.29, 92.94 \text{ (2 Cp-C}_{q}), 193.94 \text{ (CHO)}, 1 \text{ Cp-C}_{q}$ not observed; *mlz* (El, 60 °C) 362.9928 (M⁺, 30%; C₁₅H₁₈BrFeNO requires 362.9923), 321/319 (6), 268 (28), 239 (54), 212 (16); [α]₂ ²⁰ -720 (589 nm), -806 (578), -1334 (546) (c 0.128 in CHCl₃). (R,S_p)-5: yellow powder; mp 121–123 °C; δ_{H} (400.1 MHz; CDCl₃; CHCl₃; ppm) 1.42 (3 H, d, J 6.9, CHCH₃), 1.71 (1 H, br s, OH), 2.09 (6 H, s, N(CH₃)₂), 3.57 (1 H, q, J 6.9, CHCH₃), 4.12 (1 H, m, Cp-H₄), 4.12 (5 H, s, Cp'), 4.21 (1 H, m, Cp-H₅), 4.25 (1 H, t, J 1.4, Cp-H2), 4.33 (2 H, s, CH₂OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; CDCl₃; ppm) 15.55 (CHCH₃), 40.62 (N(CH₃)₂), 58.54 (CHCH₃), 60.88 (CH₂OH), 66.96, 66.99 (Cp-C4, Cp-C5), 69.00 (Cp'), 69.12 (Cp-C2), 87.75, 87.89 (2 Cp-C_q); m/z (EI, 70 °C) 287.0980 (M⁺, 81%; C₁₅H₂₁FeNO requires 287.0973), 272 (25), 243 (90), 225 (27), 134 (100). $[\alpha]_{\lambda}$ ²⁰ -1.2 (589 nm), -1.6 (578), -7.9 (546) (c 0.674 in CHCl₃). (S_p)-15: yellow powder; mp 55– 59 °C; $\delta_{H}(400.1 \text{ MHz}; \text{ CDCl}_{3}; \text{ CHCl}_{3}; \text{ ppm}) 0.08 [6 \text{ H, s, } 2]$ $Si(CH_3)_2C(CH_3)_3$, 0.93 [9 H, s, $Si(CH_3)_2C(CH_3)_3$], 1.49 (1 H, t, J 5.9, OH), 4.15 (5 H, s, Cp'), 4.19 (1 H, dd, J 2.0 and 1.3, Cp-H4), 4.22 (1 H, dd, J 2.0 and 1.3, Cp-H5), 4.29 (2 H, d, J 5.9, CH₂OH), 4.30 (1 H, t, J 1.3, Cp-H2), 4.41 (2 H, s, CH₂OTBDMS); $\delta_{\rm C}(100.6 \text{ MHz}; \text{CDCl}_3; \text{CDCl}_3; \text{ppm})$ -5.16 (2C Si(CH₃)₂C(CH₃)₃], 18.37 [C_q, Si(CH₃)₂C(CH₃)₃], 25.97 [3 C Si(CH₃)₂C(CH₃)₃], 60.75 (CH₂OH), 61.16 (CH₂OTBDMS), 67.52 (Cp-C4), 67.73 (Cp-C2), 68.03 (Cp-C5), 68.82 (Cp'), 88.43, 88.46 (2 Cp-C_q); m/z (EI, 80 °C) 360.1197 (M⁺, 100%; $C_{18}H_{28}$ FeO₂Si requires 360.1208), 285 (3), 229 (19), 195 (20), 91 (49), 75 (28). $[\alpha]_{z}^{20}$ –6.9 (589 nm), –6.5 (578), –9.1 (546) (c 0.583 in CHCl₃). (R_p)-21: yellow powder; mp 62–68 °C; δ_H (400.1 MHz; CDCl₃; CHCl₃; ppm) 1.57 (1 H, t, J 5.8, OH), 2.27 (3 H, s, CH₃C₆H₄), 4.27 (5 H, s, Cp'), 4.34 (2 H, d, J 5.8, CH₂OH), 4.39 (1 H, dd, J 2.4 and 1.5, Cp-H4), 4.41 (1 H, dd, J 2.4 and 1.5, Cp-H5), 4.48 (1 H, t, J 1.5, Cp-H2), 6.98–7.02 (2 H, m, C₆H₄-H_{ortho}), 7.02–7.06 (2 H, m, C₆H₄-H_{meta}); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; CDCl₃; ppm) 20.88 (CH₃C₆H₄), 60.51 (CH₂), 69.44 (Cp-C4), 69.99 (Cp'), 74.26 (Cp-C2), 74.83 (Cp-C5), 77.36, 90.05 (2 C, Cp-Cq), 126.94 (2 C,C₆H₄-C_{meta}), 129.43 (2 C, C₆H₄-C_{ortho}), 135.19, 136.36 (2 C, C₆H₄-C_q); m/z (EI, 100 °C) 338.0424 (M⁺, 100%; C₁₈H₁₈FeOS requires 338.0428), 200 (85), 185 (37), 167 (15), 138 (11), 121 (19); $[\alpha]_{\lambda}^{20}$ -43.3 (589 nm), -44.1 (578), -43.7 (546) (c 0.513 in CHCl₃).

- 1 P. Barbaro, C. Bianchini, G. Giambastiani and S. L. Parisel, Coord. Chem. Rev., 2004, 248, 2131; R. C. J. Atkinson, V. C. Gibson and N. J. Long, Chem. Soc. Rev., 2004, 33, 313; Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH, Weinheim, 2000.
- 2 T. J. Colacot, Chem. Rev., 2003, 103, 3101; Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, ed. A. Togni and T. Hayashi, VCH, Weinheim, 1995.
- 3 N. D'Antona, D. Lambusta, R. Morrone, G. Nicolosi and F. Secundo, Tetrahedron: Asymmetry, 2004, 15, 3835; T. Chuard, S. J. Cowling, M. Fernandez-Ciurleo, I. Jauslin, J. W. Goodby and R. Deschenaux, Chem. Commun., 2000, 2109.
- 4 For achiral ferrocene-based pincer ligands see: A. A. Koridze, S. A. Kuklin, A. M. Sheloumov, F. D. Dolgushin, V. Y. Lagunova, I. I. Petukhova, M. G. Ezernitskaya, A. S. Peregudov, P. V. Petrovskii, E. V. Vorontsov, M. Baya and R. Poli, Organometallics, 2004, 23, 4585; A. A. Koridze, A. M. Sheloumov, S. A. Kuklin, V. Y. Lagunova, I. I. Petukhova, F. M. Dolgushin, M. G. Ezernitskaya, P. V. Petrovskii, A. A. Macharashvili and R. V. Chedia, Russ. Chem. Bull., 2002, 51, 1077; E. J. Farrington, E. Martinez Viviente, B. S. Williams, G. van Koten and J. M. Brown, Chem. Commun., 2002, 308.
- 5 C. Pichon, B. Odell and J. M. Brown, Chem. Commun., 2004, 598.
- 6 T. Izumi and T. Hino, J. Chem. Technol. Biotechnol., 1992, 55, 325
- 7 D. W. Slocum, R. L. Marchal and W. E. Jones, Chem. Commun., 1974, 967.
- 8 I. R. Butler, M. G. B. Drew, C. H. Greenwell, E. Lewis, M. Plath, S. Müssig and J. Szewczyk, Inorg. Chem. Commun., 1999, 2, 576.
- 9 O. Riant, G. Argouarch, D. Guillaneux, O. Samuel and H. B. Kagan, J. Org. Chem., 1998, 63, 3511; F. Rebiere, O. Riant, L. Ricard and H. B. Kagan, Angew. Chem., 1993, 105, 644, Angew. Chem., Int. Ed. Engl., 1993, 32, 568.
- 10 J. W. Han, N. Tokunaga and T. Hayashi, Helv. Chim. Acta, 2002, 85,
- 11 Analogous to: J. Cabou, J. Brocard and L. Pelinski, Tetrahedron Lett., 2005, 46, 1185
- 12 L. Xiao, R. Kitzler and W. Weissensteiner, J. Org. Chem., 2001, 66, 8912.
- 13 For alternative syntheses of 10 and 11 see: T. E. Pickett, F. X. Roca and J. Richards, J. Org. Chem., 2003, 68, 2592; M. Widhalm, U. Nettekoven and K. Mereiter, Tetrahedron: Asymmetry, 1999, 10,
- 14 D. Guillaneux and H. B. Kagan, J. Org. Chem., 1995, 60, 2502.
- 15 I. R. Butler and M. G. B. Drew, Inorg. Chem. Commun., 1999, 2, 234.