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Catechol-functionalized (salen)Mn complexes can be supported

on mesoporous anodized aluminium oxide disks to yield

catalytic membranes that are highly active in the enantioselec-

tive epoxidation of olefins when being deployed in a forced-

through-flow reactor.

Catalytic membrane reactors have attracted much attention over

the last decade due to practical advantages over other reactor

designs. They can potentially reduce the size of conventional

reactors and cost of operation by combining two essential

processes, chemical reaction and separation of the resulting

products from the catalyst, in one stage.1 In particular, the

catalytic membrane reactor configuration confers a significant

advantage to oxidation reactions—the use of a catalytic membrane

can provide a reactive interface for the oxidation to take place

while avoiding long contact times of the desired product with

catalysts, thereby minimizing over-oxidation.2

Recent developments in the synthesis of inorganic materials

have allowed chemists to create single-site catalysts and catalyst

supports that provide a uniform environment around each active

catalyst center.3 Among these inorganic materials, mesoporous

anodic aluminium oxide (AAO) membranes have received great

attention.4 They contain well-ordered, densely packed, nanoscale

pores that naturally form when aluminium films are anodized in

an acidic electrolyte. Although AAO membranes can be brittle,

they are used in a number of diverse applications such as bio-

reactors;5a sensors;5b templates for quantum dots,5c nanowires,5d

nanotubes,5e and nanofibers;5f and supports for metals5g and

catalysts.5h

An attractive potential use for AAO membrane would be as a

support for the immobilization of asymmetric homogeneous

catalysts to generate an enantioselective catalytic membrane.

Heterogenized asymmetric catalysts are intrinsically more econom-

ical and convenient to use than their homogeneous counterparts

since they can provide a direct route to chiral products without

costly separations.6 Among asymmetric homogeneous catalysts,

chiral (salen)Mn complexes (Jacobsen–Katsuki catalysts)7 for the

asymmetric epoxidation of olefins comprise one of the most widely

immobilized classes of homogeneous catalysts.8 However, the ideal

combination of activity, selectivity, and recyclability has not been

achieved to date.

We have long been interested in the design of a catalytic system

that can perform both a chemical transformation and a separation

event within a single functionalized membrane material. To this

end, we have explored the use of commercially available AAO

membranes (Anodisc1, Whatman) as the supporting materials for

chiral (salen)Mn complexes. Being non-compressible and posses-

sing high chemical and thermal stability, the AAO membranes can

serve as a stationary phase suitable for incorporation into catalytic

membrane reactors. In addition, their mono-disperse pores provide

well-defined surfaces upon which site isolation of the supported

catalyst can be more carefully controlled than in cross-linked

polymers or other inorganic solid supports.

Herein, we report the fabrication of a chiral (salen)Mn-

immobilized AAO membrane and demonstrate its use in a

catalytic membrane reactor for enantioselective epoxidation. As

anchoring groups for the (salen)Mn complexes, we have chosen

catechol (1,2-dihydroxyphenyl), which has great affinity for AlIII

ions9 and can adsorb strongly onto Al2O3.
10

Our catechol-functionalized unsymmetrical chiral salen ligand

can be prepared easily from (1R,2R)-diaminocyclohexane in good

yield and then metallated with MnCl2/LiCl in air, resulting in

complex 1. Immobilization of 1 was accomplished by stirring its

ethanolic solution with an AAO membrane{ at 70 uC for 24 h,

resulting in a brown membrane (1-AAO) (Fig. 1). The catalyst

loading was determined by inductively coupled plasma (ICP)

spectroscopy to be 4.1 mmol g21. The modified membrane was

characterized by FT-IR, diffuse reflectance UV-Vis, and X-ray
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Fig. 1 The enantioselective catalytic AAO membrane (1-AAO) coated

with chiral (salen)MnIII catecholate complex 1. The complex was not

shown in scale to the channel dimensions.
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photoelectron spectroscopy to confirm the presence of surface-

attached catalyst (see Supplementary Information{).

To provide a benchmark for the catalytic activity and selectivity

of 1-AAO in the homogeneous state, complex 211 was also

prepared. Catalytic epoxidations of 2,2-dimethyl-2H-chromene

were carried out with both 1-AAO and 2 using 2-(tert-

butylsulfonyl)iodosylbenzene, 3, as the oxidant (Table 1).12

Although initial rates cannot be obtained,13 under optimized

batch reaction conditions 1-AAO afforded the epoxide in yield and

selectivities that are similar to those of 2 (Table 1, cf. entries 1 and

5).14 These data suggest that reactant molecules have easy access to

the supported active sites on the membrane, and that the sites

retain structures that are similar to that of the free catalyst. This

notion makes sense given the well-ordered, highly porous, and

rigid morphology of AAO membrane and the large channel sizes

(¢20 nm), which define a readily accessible and unconstrained

environment15 for the immobilized catalyst.

Moreover, catalytic membrane 1-AAO can be recovered and

reused after a simple cleaning procedure (Table 1, entries 2–4).

Although the recycled 1-AAO membrane did exhibit a gradual

decrease in activity,16 it was still active with excellent chemoselec-

tivity and good enantioselectivity after four cycles (85% of the

original enantioselectivity). ICP analysis carried out on a

membrane after the fourth cycle showed that 83–87% of the

manganese still remained in the membrane.17

Membrane 1-AAO can also be used effectively in a simple

catalytic membrane reactor (Fig. 2) where the substrate and

oxidant are introduced via a syringe pump, which also controls the

feed rate of reactants.18 The catalytic results, obtained with the

various fluxes, are presented in Table 2. Due to the membrane’s

compatibility with high flux (maximum flux for water 5

4.9 mL min21 cm22),19 fluxes of up to 7.5 mL h21 cm22 were

easily obtained with reactant mixture in dichloromethane, which is

much less viscous than water. In this liquid phase forced-through-

flow membrane reactor,20 1-AAO exhibited extremely high activity

and excellent chemoselectivity (Table 2, entries 1–2, 4).

Furthermore, its enantioselectivity was similar to that of 2 under

homogenous conditions. When the 7.5 mL h21 cm22 flux was

applied, 1-AAO provided unprecedented high turnover frequency

(TOF) and one-pass conversion (Table 2, entry 4). Although not

directly comparable to our present data, PDMS-membrane-

occluded Jacobsen’s catalyst only affords a TOF of 0.0438 h21

for the styrene–NaOCl system21 and [Al-MCM-41]-immobilized

Jacobsen’s catalyst only gave a TOF of 26 h21 for the stilbene–

iodosylbenzene system.16a Moreover, when 1-AAO was reused

after one cycle, it was still active and selective although the TOF

had dropped off significantly16c (Table 2, entry 5). It is probable

that at 2000 TON (total TON after 2 cycles at 10 mL h21, Table 2,

entries 3–4) we are close to the limit of TON for 1-AAO in the

presence of 3.

The product/reactant ratio can be further improved to 80%

conversion (from 60%) by passing the initial permeate through

another identical 1-AAO membrane (Table 2, cf. entries 2 and 3).

The leached-out Mn in the permeate side does not contribute to

the overall activity as only a minimal increase (y0.6%) in

conversion was observed when the permeate was allowed to stir

for an additional hour after being passed through the membrane.

The high activity and selectivity for asymmetric epoxidation

obtained in the catalytic membrane reactor system can be ascribed

to the two beneficial effects of the AAO membrane: (1) the well-

ordered and unconstrained cylindrical pore structure of the

membrane makes all active catalyst sites readily available to

reactant molecules and (2) short catalyst contact time allows

more turnovers while maintaining high selectivity and minimizing

over-oxidation.

In summary, we have demonstrated, for the first time, that

chiral catalysts can be immobilized onto mesoporous AAO

Table 1 Catalytic performance of 1-AAO vs. 2 in the asymmetric
epoxidation of 2,2-dimethyl-2H-chromenea

Entry Catalyst Yield [%]b ee [%]c s [%]d

1 1-AAO 79 81 100
2 1-AAO 2nd cycle 70 76 99
3 1-AAO 3rd cycle 62 73 97
4 1-AAO 4th cycle 51 69 95
5e 2 82 86 100
a Reaction performed in a shell vial under ambient conditions using
magnetic stirring. Molar ratio olefin/oxidant/catalyst 5 100/200/1.
b GC yield after 1 h using undecane as an internal standard.
c Determined using a Supelco b–DEX 120 chiral GC column.
d Product selectivity of epoxide over ketone as measured by 1H
NMR spectroscopy. e Control experiment under homogeneous
conditions using 1 mol% catalyst.

Fig. 2 Schematic diagram of the liquid-phase forced-through-flow

catalytic membrane reactor for the enantioselective epoxidation of olefins.

Table 2 Catalytic performance of 1-AAO in a liquid phase forced-through-flow reactor for the asymmetric epoxidation of 2,2-dimethyl-
2H-chromene

Entry
Cycle for

membrane
Cycle for
permeate Flux [mL h21 cm22]a Total TONb Conversion [%]c TOF [min21]d ee [%]e s [%]f

1 1 1 1.5 1174 47 20 86 100
2 1 1 4.5 1492 60 75 85 100
3 1h 2 4.5 1174 (1st) + 820 (2nd) 80 n/a 85 100
4 1 1 7.5 1670 67 134 84 100
5g 2 1 7.5 179 7 15 80 98
a Controlled by a syringe pump. b Total turnover number, based on conversion per catalyst. Molar ratio olefin/oxidant/catalyst 5 10,000/2,500/1.
c Based on oxidant as the limiting reagent. d Turnover frequency, based on conversion per catalyst per minute. e Determined using a
Supelco b–DEX 120 chiral GC column. f Product selectivity of epoxide over ketone, measured by NMR spectroscopy. g After one cycle
(entry 3), 1-AAO was recovered, thoroughly washed with CH2Cl2, and reused with fresh reactants. h The permeate of entry 2 was
passed through another freshly prepared 1-AAO.
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membranes, which can then be used effectively in enantioselective

catalytic membrane reactors. The supported catalytic membrane

provided easy catalyst separation and recycling with comparable

activity and selectivity to homogeneous counterparts. When used

in a forced-through-flow reactor, it offered great flexibility in the

control of substrate feed and product separation from the catalyst.

Under optimized conditions, unusually high activity (TON 5 1670,

TOF 5 135 min21) with high enantioselectivity and excellent

chemoselectivity can be observed for olefin epoxidation. This

strategy likely can be extended to other catalytic reactions,

allowing for straightforward inexpensive isolation of valuable

products as well as minimization of side reactions.
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