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Methyleneaziridines can be converted into a wide range of 1,2-

diamines and 2-cyanopiperidines in a single operation with the

formation of three intermolecular carbon–carbon bonds using

a ‘‘hybrid’’ MCR.

Multi-component reactions (MCRs) are one-pot processes in

which three or more components come together to form a product

containing substantial elements of all the reactants.1,2 Well-known

examples include the Strecker,3 Passerini,4 Ugi,2a,5 Pauson–

Khand6 and Biginelli7 reactions as well as the Mannich

condensation.8 MCRs provide an inherently more efficient

approach to chemical synthesis than conventional bimolecular

reactions, and as such efforts to develop new MCRs and related

processes continue apace.9 Of course, greater increases in

molecular complexity can be achieved in an MCR when the

number of reaction components is larger. Thus, four-component

reactions (4-CRs) are inherently more powerful than three-

component reactions (3-CRs). Unfortunately, whilst 3-CRs are

quite common (e.g. Mannich, Strecker, Passerini, Pauson–Khand

and Biginelli processes), n-CRs (n ¢ 4) are quite rare. The

enormous interest and widespread use of the Ugi 4-CR stands as

strong testament to the power and utility of such ‘‘higher-order’’

MCRs.2a In this communication, we disclose a new type of 4-CR{
that generates three new intermolecular C–C bonds by the

application of a ‘‘hybrid’’ MCR strategy. Importantly, the

approach developed could be used to transform other existing

n-CRs into more powerful (n + 1)-CRs.

Analysis of existing MCRs reveals that the imine functional

group plays a key role in many of them. Typically, imines are

generated in situ by the condensation of an aldehyde (or ketone)

with an appropriate amine. For example, in the Strecker 3-CR,

a-amino nitrile formation proceeds via nucleophilic addition of

HCN to the corresponding aldimine (or ketimine) (Scheme 1).3

The adducts are readily converted into a-amino acids and related

derivatives, making this reaction of considerable importance

150 years after its discovery. Recently, we reported a new 3-CR

based upon methyleneaziridines,10,11 which are readily made in

two simple steps from the corresponding primary amine and 2,3-

dibromopropene.12 This 3-CR can be performed either in

solution,10 or on solid phase.11 It involves ring opening of the

highly strained aziridine ring at C-3 using a Grignard reagent

under Cu(I) catalysis, and capture of the resultant metalloenamine

with a carbon based electrophile (R2–X). Simple hydrolysis of the

resultant ketimine provides a one-pot method for the synthesis of

1,3-disubstituted propanones (Scheme 1). Considerable variation

in the structure of all three components has been demon-

strated.10,11 Recognising that the methyleneaziridine MCR pro-

ceeds through a ketimine intermediate, we realised that by

amalgamation of the Strecker and methyleneaziridine MCRs, we

could produce a new ‘‘hybrid’’ 4-CR that could generate

considerable molecular complexity in a single vessel (Scheme 1).13

As with any MCR, a major hurdle to be overcome is the

identification of reaction conditions that are compatible with all

the reagents and individual chemical steps. Thus, to achieve the

addition of cyanide to ketimines after ring opening/alkylation, we

needed to find a reagent system that could be used in THF, and at

the same time, could be used to quench excess Grignard reagent

(typically 2 eq. used) from the aziridine ring opening step. After

some optimisation, we established that this could conveniently be

achieved by using a combination of Me3SiCN (1.5 eq.) and acetic

acid (2.5 eq.). Under these conditions, 1-benzyl-2-methyleneaziri-

dine (1) can be converted into the differentially substituted 1,2-

diamines 3–10 in one-pot by way of the corresponding a-amino

nitrile 2 (Scheme 2 and Table 1). In each example, in situ reduction

with LiAlH4 was undertaken because attempts to isolate the highly

hindered a-amino nitriles proved difficult.14 Full experimental

procedures are provided in the Electronic Supporting Information.
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In the case of diamine 6, conversion to the corresponding cyclic

urea (triphosgene, Et3N, CH2Cl2, 0 uC, 18 h, 69%) provided

crystals suitable for single crystal X-ray diffraction which enabled

its structure, and hence that of 6, to be unambiguously established

(see Electronic Supporting Information).15 The yields in these

MCRs are quite modest (34–50%), however the efficiency

with respect to each individual C–C bond forming step is good

(¢ 70%/C–C bond). Our preliminary findings suggest its tolerance

with respect to changes in the structure of the methyleneaziridine,

Grignard, and electrophile component are broadly in line with the

simpler ketone MCR.10,11

Piperidines can be made by the methyleneaziridine MCR by

using an electrophile bearing two leaving groups in a 1,3-

relationship.10b Treatment of 1 with MeMgCl, 1,3-diiodopropane

then HCN (generated from Me3SiCN and AcOH) provided

piperidine 11 in 55% yield by way of a 4-CR (Scheme 3). The

structure of 11 was unambiguously established by X-ray crystal-

lography of the corresponding primary amide 13 prepared by

hydrolysis of the nitrile substituent (Fig. 1).15,16 Piperidines bearing

different C-2 substituents can be produced by simply changing the

Grignard reagent. For example, 12 was assembled using iBuMgCl

in the MCR. Although the overall yields for these conversions are

again modest, efficiency is very good when viewed in the context of

the total number of new bonds produced (3 6 C–C; 1 6 C–N;

> 85%/bond). Encouragingly, using homochiral (S)-14,

appreciable levels of asymmetric induction (d.r. 9 : 1) were

observed in the formation of 15 (Scheme 3). The stereochemistry at

C-2 is tentatively assigned as the (S)-configuration in the major

diastereomer.17

To conclude, a ‘‘hybrid’’ MCR that combines the essential

features of Strecker and methyleneaziridine MCRs has been

developed that can be used to make a selection of a-amino nitriles

and 1,2-diamines wherein three intermolecular C–C bonds are

produced. In view of the prominent role of the imine functional

group in other MCRs, we believe that this ‘‘hybrid’’ approach

could be used to develop additional ‘‘higher order’’ n-CRs (n ¢ 4).

Work in this direction is ongoing in our laboratories.
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