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Polymer chirality assignment is achieved with the first chemical
applications of the S,. and C. molecular point groups to
infinite cyclic polymers, obviating the usual dependence on
translational symmetry operations.

The classification of a molecule as chiral or achiral depends
essentially on the point group of that molecule. Any molecule
belonging to the point groups C;, C,, D,, T, O, or I is chiral;
otherwise it is achiral.' This assignment is often straightforward for
small molecules but cannot be applied generally to synthetic
polymers because a typical polymeric sample contains a multitude
of unique, structurally distinct species. Therefore, chirality
prediction in linear macromolecules has relied on three chain
models:* a finite chain model with identical end groups;® a finite
chain model with different end groups;* and an infinite chain
model.’ Each of these models has been gainfully applied. However,
since none rely on molecular point group assignment, it seemed
advantageous to devise a universal model that could reliably
predict a polymer’s chiroptical properties based on the straightfor-
ward point group rule for chirality stated above.

In 1965, Natta et al. reported the conversion of the infinite chain
model to a finite cyclic model that applied symmetry elements to
four- and six-membered rings.®” This is an acceptable construct for
identifying many chiral polymers, but tactic polymers with main-
chain directionality were not fully addressed. Herein such polymers
are considered with an infinite cyclic model, resulting in the first
chemical applications of the S».. and C., molecular point groups.®
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Fig. 1 Syndiotactic poly(lactic acid) (a) is considered achiral because of
the glide-reflection symmetry operation that generates the original
rendition of the repeat unit (b).
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Syndiotactic poly(lactic acid) (s-PLA, Fig. 1a) is a tactic polymer
of recent origin with main-chain directionality.” A randomly
selected polymer chain has C; symmetry—yet the bulk material
does not exhibit optical activity. This observation is readily
explained upon identification of a glide-reflection symmetry
operation that yields the original representation of the repeat unit
(Fig. 1b). The presence of this reflective symmetry mandates
achirality—at least in the limit of large 7.

Now consider (presently unknown) cyclic s-PLA with n repeat
units (Fig. 2). The glide-reflection symmetry operation is now
equivalent to the rotation—reflection, which is the S,, improper
rotation. In the artificial limit of infinite »—which serves best to
assess the chiroptical properties of the corresponding high
molecular weight linear polymer—this molecule bears the S
improper axis, but no mirror planes of symmetry and thus, should
be assigned to the S,.. point group. Note that an improper axis
generates the set of operations S, S22, 8,2, ..., but the result is
different for even and odd 7. The present case pertains to even
order improper axes because, as concluded from Fig. 2, the S5,
symmetry operation is applicable and 2n must be even for integral
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Fig. 2 Cyclic s-PLA is a member of the S5, point group and thus is
achiral. The depicted rotation-reflection constitutes the S, symmetry
operation. As n approaches infinity, the S,.. point group applies.
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values of n. Therefore, it is more rigorous to describe the present
point group as S,.. (instead of S..) since this designation more
clearly implies even order axes.

The group multiplication table for the point group Sy. is
presented in Table 1. Note that S».°” = E and that the symmetry
operations S»..*" reduce to Cs..*".!1® Also—as might be guessed
from the alternating presence of i and C, in the S, (=C)), S4, Se, Ss,
S10, and Sy, point groups—S,..” is equivalent to i for © = 2n + 1,
but equivalent to C, for % = 2n. The collection of symmetry
operations is infinite, but can be denoted as

3 5 200—1 2 4 6 20—2
E, Sy, S2s7, S207, 1ty S s Co”y Coy Gy oy O 51
or

3 5 200—1 2 4 6 200—2
E, Szw, Szw N SZoo 5 ey SZoo N C23c ) CZoo N Czoo s ey Czoo N

&)

depending on whether « is considered odd or even, respectively.
Each set constitutes a novel mathematical, Abelian group. In the
former case, these symmetry operations correspond to those of the
well-known D.., point group upon desymmetrization via elimina-
tion of all ¢, and C, (L to the principal axis) symmetry
operations.

Isotactic poly(lactic acid) (i-PLA), another tactic polymer
with main-chain directionality, can be considered analogously. The
only symmetry elements present for the cyclic polymer with n
repeat units are the proper axes of rotation C,, C,2, C,>, ... (Fig. 3).
Accordingly, the infinite cyclic polymer is a member of the C.
point group, mandating assignment of the original linear polymer
as chiral. The C.. group multiplication table (Table 2) is readily
obtained from that of S,. upon exclusion of all improper
rotations. One may note that desymmetrization of the well-known
C..y point group by removal of the ¢, symmetry operations yields
C...

In summary, the development of a universal point group
formalism for the prediction of polymer chirality has identified the
first chemical applications of the S>.. and C.. molecular point
groups. Linear tactic polymers with main-chain directionality are
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Table 1 Group multiplication table for the molecular point group S»..*

¥ e
o rotation
i ’EP’ ) by 360°/n
A <.l .
J;;{ \& OKc’z‘c ‘i{ 7/?1/9)/(3_‘{

Fig. 3 Cyclic i-PLA is a member of the C, point group and thus is chiral.
The depicted rotation constitutes the C, symmetry operation. As n
approaches infinity, the C.. point group applies.

Table 2 Group multiplication table for the molecular point group C..

C E C., C.2 c.? c.!

E E C.. C.? C.? c.!
C. C. ¢ ol ... ! E
C2 C.2 ¢t ot o E C.,
.o ¢ o' E .o C.
! ¢t E C.. C.3 c.?

converted to an infinite cyclic model and considered as members of
these point groups. Assignment as achiral (S>.) or chiral (C..) then
proceeds without any dependence on translational symmetry
operations, such as glide-reflection. Group multiplication tables
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E E Soee G2 She’ [ S5 e G ST G st
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Soee S Soeo Soeo 5.0 S E e S 5.7 S Soes
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“ The symmetry operation S»..” is equivalent to i for «© = 2n + 1, but equivalent to C, for « = 2n. S,..V" reduce to Cs..
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for these infinite Abelian groups are presented and derivation of
their character tables will be presented elsewhere.

Importantly, the universal point group formalism is of consider-
able pedagogical benefit for efficiently characterizing the chiroptical
properties of macromolecules, which would not be amenable to
strict point group classification without the unusual Sy and C.
molecular point groups presented. While these point groups only
apply to molecules of infinite and imaginary structure, they none-
theless highlight valuable chemical applications of group theory.
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