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Oxidative activation of a B–H bond of a coordinated

scorpionate ligand provides an unprecedented route to

rhodaboratranes.

The chemistry of hydrotris(pyrazolyl)borate rhodium complexes

such as [Rh(CO)LTp] {L 5 CO or P-donor ligand; Tp 5

HB(pyrazolyl)3, the archetypal scorpionate ligand},1 especially the

photochemical activation of hydrocarbons by the dicarbonyls,2 is

well established. However, attempts to synthesise S-donor scorpio-

nate analogues, using hydrotris(2-thio-1-R-imidazolyl)borate

{HB(mimR)3 or TmR, Scheme 1}, have instead usually led to

cleavage of the B–H bond and formation of well-defined

rhodaboratranes with direct rhodium–boron bonds, e.g.

[RhCl(PPh3){B(mimR)3}] (R 5 Me3,4 or But 5). (Other metalla-

boratranes include [Ru(CO)(PPh3){B(mimMe)3}],6 [Co(PPh3)

{B(mimBut

)3}][BPh4]
7 and [Ir(CO)(PPh3){B(mimMe)3}].8)

Our interest in rhodium scorpionates has centred on the

preparation of stable Rh(II) species by the one-electron oxidation

of, for example, [Rh(CO)(PPh3)Tp9] {Tp9 5 hydrotris(3,5-

dimethylpyrazolyl)borate, acting as a bidentate N2-donor} to

[Rh(CO)(PPh3)Tp9]+ (where Tp9 is a tridentate N3-donor).9 In

seeking to extend this redox chemistry by using hydrotris(4-

ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate {HB(taz)3 or Tt,

Scheme 1} (a potential N-, S- or mixed donor),10 we have

discovered an unprecedented route to rhodaboratranes involving

the oxidative activation of the B–H bond of a coordinated

scorpionate ligand.

The reaction of [{RhCl(g4-cod)}2] (cod 5 cycloocta-1,5-diene)

with NaTt gives [Rh(g4-cod)Tt] which reacts sequentially with CO

and PPh3 to give [Rh(CO)(PPh3)Tt] (1).{ The X-ray structure{ of 1

shows a rhodium centre coordinated to two S atoms of the Tt

ligand and the H atom of a B–H group positioned approximately

axially above the Rh centre [Rh(1)…H(1) 2.41 Å], and substantial

angular distortion of the Rh(I) centre from square planar

coordination (Fig. 1). This type of bonding mode, previously

observed, for example, in [Ba(H2O)2Tm]11 and contrasting

markedly with N2-bonded Tp9 in [Rh(CO)(PPh3)Tp9], has been

described as S2H-coordination. More recently, however, the

Rh…H–B linkage in [Rh(g4-cod){H2B(mt)2}]12 has been described

as a three-centre–two-electron (3c–2e) agostic interaction. Cotton

et al.13 noted an analogous B–H…Mo interaction in

[Mo(CO)2{H2B(3,5-dimethylpyrazolyl)2}(g3-C7H7)] which leads

to an 18-electron count for molybdenum. We note that an axial

BH…Rh or CH…Rh interaction in a square planar rhodium(I)

complex might be better described as a 3c–4e interaction given the

presence of the filled Rh dz
2 orbital (see below).

As for the Tp9 analogue, cyclic voltammetry at a glassy carbon

electrode in CH2Cl2 shows that [Rh(CO)(PPh3)Tt] 1 is irreversibly

oxidised, with a peak potential of ca. 0.4 V. Treatment of 1

with two equivalents of [Fe(g-C5H5)2][PF6] in the presence of

NEt3 gives, after 30 min, a moderate yield of the red-

orange rhodaboratrane complex [Rh(CO)(PPh3){B(taz)3}][PF6]

(2+[PF6]
2).{ The 11B NMR spectrum of cation 2+ shows a well-

defined doublet, {J(11B103Rh) 80 Hz}, contrasting with the very
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Scheme 1

Fig. 1 The molecular structure of [Rh(CO)(PPh3)Tt] 1. (All hydrogen

atoms except that attached to boron are omitted for clarity). Important

bond distances and angles: Rh(1)…H(1) 2.41, Rh(1)…B(1) 3.239, Rh(1)–

S(1) 2.414(1), Rh(1)–S(2) 2.431(1), Rh(1)–P(1) 2.264(1), Rh(1)–C(1)

1.817(3), C(1)–O(1) 1.152(4) Å; B(1)–H(1)…Rh(1) 139, S(1)–Rh(1)–P(1)

168.86(3), S(2)–Rh(1)–C(1) 162.59(12)u.
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broad singlet previously observed for rhodaboratranes derived

from Tm.3,4

The X-ray structure{ of 2+ (Fig. 2) shows an octahedral

rhodium centre coordinated to the three S atoms and the B atom

of the B(taz)3 ligand, with a Rh–B distance of 2.155(5) Å,

comparable to those of Tm-derived rhodaboratranes such as

[RhCl(PPh3){B(mimMe)3}] {2.122(7) and 2.132(6) Å, for two

independent molecules in the unit cell},3 [Rh(PMe3)2

{B(mimMe)3}]+ {2.153(11) and 2.148(10) Å}4 and [RhCl(PPh3)

{B(mimBut

)3}] {2.095(3) Å}.5 The phosphine ligand is coordinated

trans to the rhodium–boron bond with the Rh–P bond distance

[2.495(1) Å] much longer than in 1 [2.264(1) Å]. A similarly long

distance has been observed for (B)Rh–Ptrans in [Rh(PMe3)2

{B(mimMe)3}]+ [2.459(3) and 2.471(3) Å for two independent

molecules in the unit cell]. In this complex, the much shorter Rh–

PMe3 distance cis to the Rh–B bond [2.293(3) and 2.292(3) Å]4

suggests the lengthening in 2+ relative to 1 is a result of the strong

trans influence of the boron donor, as might be expected for the

dianion BR3
22 (cf. the strong trans influence of the isoelectronic

anion [SiR3]
2 14) rather than neutral BR3 (see below).

The activation of a B–H bond by a redox reaction is unpre-

cedented but may occur as in the C–H activation reactions of, for

example, [Ru2(m-CH2)(m-CO)(m-Ph2PCH2PPh2)(g-C5H5)2]
15 and

[Mo2(m-C8Me8)(g-C5H5)2]
16 (which give [Ru2(m-CH)(m-CO)(m-

Ph2PCH2PPh2)(g-C5H5)2]
+ and [Mo2(m-C8Me7CH2)(g-C5H5)2]

+

respectively), i.e. by a double oxidation–deprotonation mechanism.

A similar mechanism for the conversion of 1 to 2+ (Scheme 2) is

supported by the need for two equivalents of a one-electron

oxidant in the presence of a base. Moreover, if the Rh…H–B bond

involves a 3c–4e interaction (between a filled Rh dz2 orbital and the

B–H bond) stepwise oxidation of 1 would convert this into 3c–3e

and 3c–2e bonds. (Similar behaviour occurs on one-electron

oxidation of [Rh(CO)(PPh3)(Tp9-k2)] where the formally 2c–4e

Rh–N s* interaction, involving the rhodium dz2 orbital and the

nitrogen atom of the third, unbound pyrazolyl ring, is converted to

a 2c–3e bond in [Rh(CO)(PPh3)(Tp9-k2)]+.9) At the same time, the

boron-bound hydrogen atom would be polarised from B–Hd2 to

B–Hd+, facilitating proton loss and formation of the B–Rh bond.

The route to 2+ also has implications for the formal depiction of

the Rh–B bond in rhodaboratranes. It has become conventional to

draw this as a dative bond from Lewis basic Rh(I) to Lewis acidic

BR3. However, the need for two equivalents of a one-electron

oxidant to synthesise 2+ from 1, the accompanying large increase in

energy of n(CO) of ca. 90 cm21 (from 1977 cm21 in 1 to 2064 cm21

in 2+, consistent with an increased formal metal oxidation state),

and the octahedral geometry of 2, unexpected for a Rh(I) complex,

suggest an alternative formal description for the Rh–B bond, i.e.

one in which the B atom of the dianion BR3
22 (isoelectronic with

CR3
2 and NR3), acts as a donor to a rhodium(III) atom. Such a

bonding description has been noted previously5 as a possibility for

[MCl(PH3){B(mimH)3}] (M 5 Rh or Ir) but was discounted on the

basis that BR3
22 dianions are unknown (even though DFT

calculations had suggested a d6 configuration for the metal centre).

One of the beauties of organometallic chemistry is the stabilisation

of otherwise unstable ligands.
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Notes and references

{ All new complexes had satisfactory elemental analyses (C, H and N).
Complex [Rh(CO)(PPh3)Tt] 1; orange crystals; yield 75%; n(CO) (CH2Cl2):
1977 cm21; 1H NMR (CD2Cl2): 7.3–7.8, m, 15H, PPh3; 3.88, q (br), J 5.9,
6H, C2N3S(CH2CH3)Me; 2.31, s, 9H, C2N3SEtMe; 1.21, t, J 7.2, 9H,
C2N3S(CH2CH3)Me; 31P NMR (CD2Cl2): 40.8, d, J(31P103Rh) 158; 11B
NMR (CD2Cl2): 24.95, s. Complex [Rh(CO)(PPh3){B(taz)3}][PF6]
2+[PF6]

2; orange-red crystals, yield 26%; n(CO) (CH2Cl2): 2064 cm21; 1H
NMR (CD2Cl2): 7.2–7.5, m, 15H, PPh3; 3.80, q, J 7.3, 4H,
C2N3S(CH2CH3)Me; 3.79, q, J 7.0, 2H, C2N3S(CH2CH3)Me; 2.37, s,
6H, C2N3SEtMe; 2.24, s, 3H, C2N3SEtMe; 1.24, t, J 7.3, 9H,
C2N3S(CH2CH3)Me; 31P NMR (CD2Cl2): 8.0, v.br, PPh3; 2143.9,
(heptet), J(31P19F) 710, PF6

2; 11B NMR (CD2Cl2): 27.52, d, J(11B103Rh)
80.0.
{ X-ray data were collected on a Bruker SMART diffractometer at 100 K
(for 1) or 173 K (for 2+[PF6]

2) for h , 25u with l 5 0.71073 Å. The
structures were solved by direct methods and refined by least-squares
against all F2 values.

Crystal data: [Rh(CO)(PPh3)Tt]?CH2Cl2 1?CH2Cl2 (from CH2Cl2–
n-hexane): C35H42BCl2N9OPRhS3, M 5 916.55, triclinic, space group
P-1 (No. 2), a 5 13.122(3), b 5 13.342(3), c 5 13.744(3) Å, a 5 76.38(3),

Fig. 2 Structure of the cation [Rh(CO)(PPh3){B(taz)3}]+ 2+. (Hydrogen

atoms are omitted for clarity). Important bond distances: Rh(1)–B(1)

2.155(5), Rh(1)–S(1) 2.397(1), Rh(1)–S(2) 2.387(1), Rh(1)–S(3) 2.386(1),

Rh(1)–P(1) 2.495(1), Rh(1)–C(1) 1.856(5), C(1)–O(1) 1.147(6) Å.

Scheme 2 S–N 5 thioxotriazolyl ring.
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b 5 79.99(3), c 5 62.36(3)u, V 5 2065.9(10) Å3, Z 5 2, m 5 0.774 mm21,
R1 5 0.0503. [Rh(CO)(PPh3){B(taz)3}][PF6]?2CH2Cl2 2+[PF6]

2?2CH2Cl2
(from CH2Cl2–n-hexane): C36H43BCl4F6N9OP2RhS3, M 5 1145.43, tri-
clinic, space group P-1 (No. 2), a 5 12.899(2), b 5 14.035(2), c 5 14.286(2)
Å, a 5 68.38(1), b 5 88.30(1), c 5 87.74(1)u, V 5 2402.1(6) Å3, Z 5 2,
m 5 0.840 mm21, R1 5 0.0552. CCDC 603867 and 603868. For
crystallographic data in CIF or other electronic format see DOI:
10.1039/b604954k
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