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a-Benzyloxyallylsilane undergoes efficient [1,4]-Wittig rearran-

gement to generate an enolate intermediate that can be trapped

with various electrophiles, thereby providing a new synthetic

approach to substituted acylsilanes.

Wittig rearrangements of a-lithiated ethers have proven to be a

valuable tool for organic chemists.1 Among these rearrangements

the [2,3]-Wittig is certainly the most studied and synthetically

mature.1,2 Similarly, the [1,2]-Wittig rearrangement has also been

the subject of numerous mechanistic and synthetic studies,1 many

of which have come out of the labs of Nakai and Tomooka. Their

investigations,3 and those of several other groups,4 have shed

considerable light on the unique stereochemical aspects of this

radical–radical anion dissociation–recombination. Allylic ethers

are also capable of a [1,4]-Wittig rearrangement.5 Nonetheless,

relative to its [1,2]- and [2,3]-counterparts, the [1,4]-Wittig remains

a reaction with many unanswered questions. For example, whether

the [1,4]-mechanism is concerted or involves a radical–radical

anion dissociation–recombination is still debated.5c,d,f The sub-

strate scope of the [1,4]-Wittig is also not well documented and

thus its potential in synthetic organic chemistry is unclear.

Moreover, for substrates capable of both pathways, a strong

preference for [1,4] over [1,2] bond reorganization is rarely

realized,5f,g,h,i with Tomooka’s very recent report of a highly

selective [1,4]-silyl migration being a relevant exception.5j

During the course of an earlier study on the MeLi-promoted

Wittig rearrangements of a-alkoxysilanes,6 we found that, upon

deprotonation, a-benzyloxyallylsilane 1 rearranged to afford a

mixture of the [1,4]-Wittig product (2) and a second compound (3)

derived from the [1,2]-Wittig product,7 with acylsilane 2 favored by

a ratio of 3:1 (Scheme 1). Owing to the aforementioned questions

concerning the [1,4]-Wittig combined with recent developments by

Scheidt,8 Johnson,9 and others10 on the use of acylsilanes in

organic synthesis, we decided to learn more about this reaction.

Specifically, we were interested in increasing the [1,4]/[1,2] ratio and

taking advantage of the enolate formed during the [1,4]-

sigmatropic shift. Furthermore, we envisaged that information

gathered during such a study would be helpful in future

investigations directed at mechanistic inquiries.

As a general rule,1,5f,11 Wittig rearrangements are sensitive to the

base used to generate the a-lithiated ether and the temperature at

which the reaction is run. Thus these seemed reasonable variables

to examine initially during the rearrangement of 1 (Table 1).

Employing 1.5 equivalents of a 1.4 M solution of MeLi in

diethyl ether as base, compound 1 was rearranged under a variety

of temperatures. These experiments revealed that temperature

clearly affects the ratio of [1,4]- vs. [1,2]-products. Per our goal, the

[1,2]-Wittig pathway could be effectively suppressed when the

reaction temperature was kept below 260 uC. However, at this

temperature, the reaction was very slow and was incomplete after

72 h. Employing a greater excess of MeLi (3–4 equiv.) and higher

temperatures (237 uC) led to complete consumption of the starting

material; however reaction times remained long (65–72 h) and

under these conditions the [1,4]:[1,2] selectivity eroded (4:1). With

MeLi as base, the combined yield of the [1,4]- and [1,2]-products

typically averaged y68%

With these preliminary temperature studies complete, we tested

different alkylithium bases in the reaction. The results are

summarized in Table 1. n-BuLi proved to be superior to MeLi,

leading to complete conversion of the substrate (1.5 equiv. of base,

278 uC, 5 h) and affording the [1,4]-product selectively ([1,2]
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Scheme 1 Wittig rearrangement of a-alkoxysilane 1.

Table 1 Optimizing the [1,4]-Wittig rearrangement of 1

Entry Base
Base
equivalents

Temperature/
uC Time/h

Yield
(%) [1,4]:[1,2]

1 MeLi 1.5–2.0 18 to 20 1.0 69 1.4:1 to 2:1
2 n-BuLi 1.5 18 to 20 1.0 68 2.45:1
3 MeLi 3.0 280 to 237 72 68 4:1
4 n-BuLi 1.5 280 to 237 2 83 9.1:1
5 s-BuLi 1.5 250 to 237 ,0.1 79–83 .20:1
6 MeLi 3.0 280 to 250 72 68 .12:1
7 n-BuLi 1.5 280 to 275 ,5 79–83 .100:1a

8 s-BuLi 1.5 280 to 275 ,0.5 79–83 .100:1a

a [1,2]-Wittig product 3 was not detected (by TLC, 1H NMR or
GC-MS).
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product could not be detected by 1H NMR spectroscopy).

Allowing the reaction to warm to 237 uC afforded the [1,2] and

[1,4] products 2 and 3 in a combined 83% yield and 9:1 ratio in

favor of the [1,4] product. However, at room temperature, the

[1,4]:[1,2] selectivity was not improved over MeLi, and the yields

were comparable. s-BuLi was found to be superior to both n-BuLi

and MeLi in initiating the Wittig rearrangements of a-alkoxy-

silanes (results are shown in Table 1). Upon treatment of a cold

(278 uC) THF solution of our model substrate 1 with

1.5 equivalents of s-BuLi (1.3 M in cyclohexane), Wittig

rearrangement was complete in 30 min to afford the

[1,4]-rearrangement product 2 exclusively12 and in good yield

(79–83%).13,14 To the best of our knowledge, this is the most rapid,

selective, and efficient [1,4]-Wittig rearrangement of a-alkoxysi-

lanes in particular, and allyl benzyl ethers in general, to be

reported.

We believe these data suggest different mechanisms for the [1,4]-

and [1,2]-rearrangements of 1. Previous studies on the concerted

[2,3]-Wittig determined that the stepwise [1,2]-Wittig becomes

competitive at higher temperatures.1 Thus, if concerted, a [1,4]-

reorganization should be preferred at cold temperatures, provided

the base is strong enough to deprotonate the starting material

(e.g. s-BuLi). Entries 3–6 of Table 1 are consistent with this

hypothesis. Depending on what base was employed, deprotonation

and rearrangement occurred to different extents over each

experiment’s temperature range. With weaker bases (MeLi and

n-BuLi) complete deprotonation–rearrangement only occurred

after reaction temperatures reached their upper limits and thus

more [1,2]-Wittig was seen. In contrast, s-BuLi deprotonated 1 at

the lower end of the temperature range thereby allowing the [1,4]-

Wittig to proceed nearly unopposed.

Having established highly selective [1,4]-Wittig conditions, we

next sought to take advantage of the enolate generated upon

rearrangement by quenching the reaction with various electro-

philes (Table 2).15 This would establish the [1,4]-Wittig as a new

way to build a-substituted acylsilanes.

As such a protocol would involve C–C bond forming reactions

at both the c- and a-carbons of the final product, the reaction

sequence would represent an alternative to the conjugate addition

of nucleophiles to 1-trimethylsilylpropenone followed by electro-

phile capture as a means of synthesizing these TMS-ketones.

Curiously enough, to the best of our knowledge, such an approach

to elaborating a,b-unsaturated acylsilanes has been used only in a

handful of specialized cases.16 As such the route described herein

appears to be unprecedented in its generality.

The results of our trapping experiments are summarized in

Table 2.17 Allylation, benzylation, and methylation afforded

only a-C-alkylated acylsilanes (5–7) in moderate to good yields

(Table 2, entries 1–3). Reaction with ethyl iodide or propyl

iodide resulted in 3:1 mixtures of the C- and O-alkylated products

(81% and 66% yields respectively) (entries 4–5). Benzaldehyde

proved a troublesome electrophile as over condensation was

difficult to control (entry 6).18 However, quenching with TMSCl

selectively gave (E)-O-silylenol ether 12 in 73% yield (entry 7).19

In light of the benzaldehyde result, the efficient generation of

the silylketene acetal is noteworthy since such compounds

react well under Mukaiyama aldol conditions to give b-alkox-

yacylsilanes.20 Similarly, enol ester 13,19 resulting from the

reaction with Ac2O, could also be obtained by this protocol

(entry 8).

This process could also be used as a route to TMS-substituted

alkynes. As discovered by Fleming and Mwaniki, enol triflates of

acylsilanes are prone to rapid dehydration.21 Thus trapping with

PhNTf2 did not afford any observable amounts of the correspond-

ing vinyl triflate, but rather gave trimethyl(4-phenylbut-1-ynyl)-

silane 14 in 58% yield (entry 9). Use of the nonaflating reagent

CF3(CF2)3SO2F under similar reaction conditions resulted in the

formation of the vinyl nonaflate 15 as determined from the 1H

NMR spectrum of the crude reaction mixture. However, even the

nonaflate proved sensitive to acidic conditions and, once subjected

Table 2 1,4-Wittig rearrangement–enolate trapping

Entry Electrophile Product(s)
Yield
(%)

1 CH2LCHCH2Br 55

2 PhCH2Br 66

3 MeI 73

4 EtI 81

5 PrI 66

6 PhCHO Over condensation —
7 TMSCl 73

8 AcCl 69

9 PhNTf2 58

10 CF3(CF2)2SO2F 58
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to silica gel column chromatography, it too underwent elimination

to give 14 in the same 58% isolated yield (entry 10).

In summary, we have established that, upon deprotonation with

s-BuLi, a-benzyloxyallylsilane (1) undergoes [1,4]-Wittig rearran-

gement with unprecedented selectivity. By concluding the reaction

with the addition of an electrophile, a-benzyloxyallylsilane serves

as a unique source of a variety of a-substituted acylsilanes.

We thank Feng Geng for preliminary studies as well as the NIH

(HL-58114), NSF (CHE-9984644), and the Astellas USA

Foundation for their generous support.
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