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CrAsH is a tetracysteine-binding probe which has improved

properties in terms of signal-to-noise ratio and pH dependence

of fluorescence compared to the parent compound.

Great interest in the identification and validation of protein–

protein interactions in vitro and in vivo has arisen, as it is becoming

apparent that cellular information is being generated not only

genetically, but also through protein localization and interactions.1

In order to find protein interaction networks in a high-throughput

fashion, a versatile tag has to be genetically added at one end of the

protein, so that all proteins in the organism or pathway of interest

can be treated in the same way.2 Several multi-use affinity probe

(MAP)/genetically-encoded tag platforms have been introduced.3–5

Smaller tags have been shown to be less likely to disrupt protein

function in the living cell.6 One such small tag is the Cys-Cys-X-X-

Cys-Cys (tetracysteine; Cys4) tag pioneered by Roger Tsien and

coworkers,7,8 which covalently binds biarsenical MAPs, i.e.,

fluorescein and other dyes with the xanthene backbone derivatized

with two As(III) moieties. These probes, Fluorescein Arsenical

Helix binder (FlAsH) and Resorufin Arsenical Helix binder

(ReAsH), have been tested for many uses, e.g., in vivo fluorescence

imaging,8–10 protein purification,11 protein complex identifica-

tion,12 fluorescence polarization13 and FRET measurements.14

Biarsenical probes are synthesized as the ethanedithiol-capped

arsenic derivatives (henceforth referred to as probe, or free probe,

as opposed to probe-EDT2) and it is their great advantage that

they have low fluorescence in this form. Upon ligand exchange to

a tetracysteine peptide genetically engineered onto the protein of

interest (probe–Cys4-peptide complex), the fluorescence of the

probe is increased. Unfortunately, in the case of FlAsH, the

fluorescence is also increased upon binding to membranes and

hydrophobic pockets of proteins, resulting in high background

fluorescence which can be reduced by prebinding these pockets

with other dyes.15 Alternatively, a modification which renders

fluorescein less hydrophobic should also reduce this non-specific

binding. We chose to add a carboxy group to fluorescein to verify

this hypothesis.

Careful review of the literature shows that carboxy-FlAsH

(CrAsH-EDT2, or CrAsH) had previously been synthesized as an

intermediate for an affinity resin.7 Because the increased polarity

of this compound could interfere with its ability to cross the cell

membrane, we also synthesized the diacetylated form acetylCrAsH

(Scheme 1). In short, CrAsH was synthesized essentially as

described previously.7 Then, acetyl chloride was used as an

acetylating reagent and added into the CrAsH pyridine solution at

room temperature. The reaction came to completion quickly and

generated acetylCrAsH as white precipitate.

As seen in Fig. 1, CrAsH emits at 513 nm in the ethanedithiol-

(Fig. 1B) and at 534 nm in the peptide-ligated forms (Fig. 1C).{
Binding with the model Cys4-peptide Ala-Arg-Glu-Ala-Cys-Cys-

Pro-Gly-Cys-Cys-Lys (AREACCPGCCK) increases fluorescence

of both CrAsH and FlAsH about 35-fold. Thus, both compounds
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Scheme 1 Synthesis of CrAsH (1) and acetylCrAsH (2). FlAsH lacks the

5-carboxy group.

Fig. 1 Absorbance (A) and fluorescence emission spectra (B,C) of

ethanedithiol- (A,B) and Cys4-peptide- (C) bound CrAsH (1), acetyl-

CrAsH (2) and FlAsH (3). All fluorescence intensities are normalized to

CrAsH-EDT2.
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show the same dynamic range under these aqueous conditions,

even though the CrAsH–peptide complex is a little less than half as

fluorescent as the FlAsH–peptide complex. AcetylCrAsH exists in

the lactone form and has almost no absorbance or fluorescence

(Fig. 1A–C). Since in vivo acetylCrAsH is expected to be rapidly

converted to CrAsH by esterase enzymes, just like acetylfluorescein

to fluorescein,16,17 we have concentrated on the in vitro

characterization of CrAsH only.

In order to characterize CrAsH binding to the protein tag, we

titrated our model Cys4-peptide into a 1 mM solution of CrAsH.

As shown in Fig. 2, CrAsH binds to its target binding sequence in

a one-to-one binding mode with a Kd of 407 ¡ 11 nM in the

presence of 1 mM 2-mercaptoethanol (BME) and 1 mM tris(2-

carboxyethyl)phosphine (TCEP). This affinity is one order of

magnitude weaker than FlAsH under the same conditions, and

virtually the same as that of the red analog, ReAsH.

It is desirable that a probe to be used in vivo has fluorescence

properties that are stable at biological pH (7.1–7.2 in the cytosol,

7.4 extracellular, indicated with dotted lines in Fig. 3). We

therefore measured the fluorescence of free and bound CrAsH and

FlAsH at different pHs. Both probes have a strong pH dependence

(Fig. 3); however, the CrAsH–peptide complex reaches a

maximum around pH 7 and is stable above that pH. In contrast,

we find that the fluorescence signal associated with the FlAsH–

peptide complex is at a saddle point around pH 7. The FlAsH–

peptide complex, like fluorescein,18 has multiple pKas, two of

which we calculate to be 5.6 and 8.1 and assign to the neutral to

anion, and anion to dianion transitions (Fig. 3). These results are

consistent with prior reports, which found an apparent pKa of 5.4

for FlAsH.8 The observed pKas are larger than those associated

with fluorescein, consistent with the notion that the arsenic groups

are functioning as electron donors, raising both pKas by about one

unit compared to fluorescein. In the case of CrAsH, the

corresponding pKas would be from anion to dianion, and dianion

and trianion. We probably see only one transition because the

trianion is energetically more unfavorable than the FlAsH dianion,

raising the highest pKa from pH 8.1 in FlAsH into the phenolic

range above pH 10. CrAsH will therefore be the preferred probe

for quantitative fluorescence measurements, especially important

when labeled proteins move between different cellular environ-

ments or stress factors cause pH changes.

In order to test our hypothesis that CrAsH has lower non-

specific binding to hydrophobic proteins than FlAsH, we titrated

both free dyes with serum albumin. This protein is the most

abundant protein in human serum, comprising more than 50% of

total serum protein.19 It is also a component of many cell growth

media, and is rapidly taken up by cells in culture through specific

receptors.20 Titration of CrAsH with albumin results in a minimal

increase in fluorescence intensity. The fluorescence intensity of

CrAsH with 1.0 mM added albumin is similar to that observed for

FlAsH in the absence of albumin (Fig. 4A). In contrast, there is an

approximately 4-fold increase in the fluorescence intensity of

FlAsH at an equal concentration of albumin, and an 11-fold

increase at 1 mM albumin. This latter high affinity association

between albumin and FlAsH can obscure fluorescence intensity

changes associated with binding to peptide tags; indeed, upon

peptide association in the presence of albumin one respectively

observes a 2.1-fold and 8.5-fold increase in the fluorescence signal

of FlAsH and CrAsH (data not shown). Thus, the reduced

nonspecific association between CrAsH and albumin results in a

dramatic improvement in the signal-to-noise ratio that should

enhance the application of cell permeable probes to study protein

localization and dynamics.

In conclusion, we have presented data on two green multi-use

affinity probes (MAPs), which can be used to bind tetracysteine

tags genetically engineered into proteins to be studied by

fluorescence imaging. AcetylCrAsH-EDT2 is completely non-

fluorescent, but turns into the fluorescent CrAsH–peptide complex

after cleavage of the acetyl group and ligand exchange. As opposed

to the parent compound, FlAsH-EDT2, the fluorescence of the

newly characterized MAP reaches its maximum at about pH 7. As

predicted, the fluorescence signal associated with CrAsH-EDT2

does not change much due to to hydrophobic associations with

albumin in comparison to the parent compound. This results in an

Fig. 2 CrAsH shows 1 : 1 binding with Cys4-peptide.

Fig. 3 Comparison of the fluorescence properties of free and peptide-bound FlAsH and CrAsH as a function of pH, using the following buffers: acetate

(pH 3–5), phosphate (pH 6–8) and carbonate (pH 9–11).
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enhanced signal-to-noise ratio due to a greater difference between

specific and non-specific fluorescence in the presence of hydro-

phobic moieties.
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Fig. 4 Albumin-dependent changes in fluorescence intensity of FlAsH (circles) and CrAsH (squares) (A) and emission spectra in the presence of 0.25 mM

albumin (B).
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