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A novel ABB9 3 component reaction (3-CR) system based on

the organocatalyzed homoaldolic condensation of a-ketoesters

in the presence of terminal conjugated alkynoates is described.

Multicomponent reactions (MCRs) constitute excellent manifolds

for the generation of molecular complexity in an economical and

atom-efficient manner.1 They perform molecular construction by

the generation of more than two chemical bonds per operation,

with high convergence, easy structure-diversification and a broad

chemical outcome. As a part of a research program aimed at the

development of new diversity-oriented synthetic methodologies,2

we have been involved in the design and development of novel

bimolecular domino processes displaying some of the synthetic

advantages associated with MCRs. Our general design concept

relies on the development of chemical processes able to transform

a degenerate set of chemical inputs into a final product whose

structure incorporates each reactant several times and in the form

of differentiated chemical functions or structural motifs (non-

degenerate chemical output). The simplest case should be that

represented by a 3-CR involving only two starting materials. We

categorize this kind of domino process as ABB9 to highlight its

bimolecular nature (A and B) and the dual role played by

component B along the reaction pathway (B and B9).4,5 In spite of

the potential interest and synthetic value of these 3-CRs, the

number of precedents in the literature is scarce.6

In this communication, we disclose a novel aldol-based ABB9

system comprising a chemo-differentiating MCR of a-ketoesters

and terminal alkynoates catalyzed by tertiary amines. We have

recently described a set of ABB9 systems based on a novel

reactivity concept: the generation of a strong base by the action of

a good nucleophile (Scheme 1).3 Key to these systems is the

catalytic generation of allenoate I by reaction of a nucleophile

(catalyst) and a terminal alkynoate. In the presence of aldehydes,

two domino reactions take place affording propargylic enol ethers

1 (path a, Scheme 1) or dihydrofuranes 2 (path b, Scheme 1) as a

function of temperature, catalyst nature and solvent. We

speculated that the use of aldehydes or ketones more acidic than

the propiolate itself (pKa = 18.8)7 ought to inhibit these processes,

triggering a new set of domino processes based on the formation of

enolate III (Scheme 1). These new enolate-driven domino processes

would generate c-ketoenol ethers 3 via a catalytic cycle involving

a tandem homoaldol condensation–Michael-addition pair of

reactions. While the homoaldol condensation would allow the

chemo-differentiation of two units of the carbonyl-containing

starting material, the Michael-addition reaction would close the

cycle by formation of product 3 and catalyst regeneration. The

practical use of this chemo-differentiated processing would give

rise to a novel and profitable homoaldol-based ABB9 3-CR.

Preliminary experimental approaches to this conceptual system

revealed a reactivity threshold for the carbonyl reactant. While

simple and enolizable aldehydes were consistently incorporated

into adducts type 1 or 2 (path a and b, Scheme 1), normal and

enolizable ketones did not react under these conditions.

a-Ketoesters display both higher reactivity and acidity than

simple ketones while incorporating an added point of reactivity in
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the form of an ester functionality. When methyl propiolate, ethyl

2-oxopropanoate (4a) and a catalytic amount of triethylamine

(20 mol%) were mixed in dichloromethane at 0 uC, a clean and

smooth reaction took place to affordthe isotetronic acid derivative

5a{ in 81% yield (Table 1, entry 1). The product incorporated one

unit of methyl propiolate (in the form of ana,b-alkenoate) and two

units of the 2-oxopropanoate (in the form of the aldol-adduct),

forming a fully-functionalized a,b-unsaturated c-lactone core

decorated with a diverse set of appended chemical functionalities

(two alkyl chains, one conjugated enol ether and two carboxylic

esters: one conjugated and the other non-conjugated). This reac-

tion constitutes the first example of this novel ABB9 3-CR, and it

provides convenient and diversity-oriented access to this chemi-

cally and biologically important family of structural motifs.8,9

Other aliphatic ketoesters behaved as suitable reactants for this

process, generating the corresponding isotetronic acid derivatives

5a–f in an excellent 85% average yield (Table 1, entries 1–7).

A limitation arises when the a-position bears an ester group

(entry 8) or a substituent (eqn (1)).

ð1Þ

A plausible mechanism is outlined in Scheme 2. The domino

process is initiated by a fast formation of allenolate I, which

triggers the catalytic cycle by generation of the ammonium enolate

III.10 Homoaldol reaction with another molecule of a-ketoester 4

affords the aldol-adduct IV.11 A sequential lactonization–depro-

tonation reaction followed by a tandem Michael-addition–

elimination on the b-ammonium acrylate counterion forms the

isotetronic acid derivative 5 with catalyst (nucleophile) regenera-

tion to restart the cycle. Lactonization of alkoxide IV liberates one

molecule of alcoholate, which is basic enough to deprotonate the

highly acidic a-ketolactone V. Note that the ester group does not

play the unique role of a keto-activating group; it is also utilized to

generate the lactone ring. Enolates derived from b-substituted

a-ketoesters (i.e. 4h), although they are kinetically accessible,

display a diminished reactivity toward the homoaldolic reaction

and their sterically congested homoadducts present important

kinetic inhibition toward the lactonization reaction. Under these

conditions, an alkynylide-driven competitive and irreversible

domino process begins to operate, funnelling the chemical

transformation toward the formation of the 1,3-dioxolane

derivatives 6 (eqn (1)).12

In summary, we have designed a novel ABB9 3-CR system

based on the organocatalyzed homoaldolic condensation of

a-ketoesters in the presence of terminal conjugated alkynoates.

This reaction generates polyfunctionalized isotetronic acid deriva-

tives with atom-efficiency and easy chemical processing. The

reaction network operates under the domino principle to construct

an a,b-unsaturated c-lactone ring, two C–O bonds and one C–C

bond, with an exquisite and efficient utilization of all and every one

of the different reactivities associated with the a-ketoester

functionality (Fig. 1). The c-lactone ring incorporates two units

of the starting a-ketoester in a very differentiated manner and it is

decorated with a diverse set of different appended chemical

functionalities. Each appended functionality can be selective and

Table 1 ABB9 3-CR of a-ketoesters and methyl propiolate catalyzed
by triethylamine (20 mol%)a

Entry R R1 Product Yield (%)b

1 H Et 5a 81
2 Me Me 5b 90
3 Et Me 5c 80c

4 Et Me 5c 90d

5 Heptyl Et 5d 89d

6 PhCH2 Et 5e 89
7 MeO2CCH2 Me 5f 85
8 MeO2C Me 5g NRe

a a-Ketoester (2 eq.), methyl propiolate (1 eq.), Et3N (0.2 eq.),
CH2Cl2, 0 uC, 1 h. b Yield of isolated, analytically pure products.
c 8% isolated yield of enol ether product obtained from the
alkylation of enolate III. d Reaction conducted in THF. e No
reaction.

Scheme 2 Mechanistic proposal for the homoaldolic-based ABB9 3-CR.

Fig. 1 Reactivity profile of the a-ketoester functionality.
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productively utilized to modulate the biological activity and/or

chemical reactivity of the isotetronic acid core.
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