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N-Tosyl-protected 3-hydroxypyrrolidines are prepared by

reaction of dimethylsulfoxonium methylide with readily avail-

able epoxysulfonamides.

The 3-hydroxypyrrolidine motif 5 is found in a range of naturally

occurring bioactive alkaloids,1 pharmaceuticals2 and drug inter-

mediates,3 and a number of synthetic approaches to 3-hydro-

xypyrrolidines have been developed.3,4 In connection with our

interest in the reactions of sulfur ylides with three-membered

heterocycles,5 and stimulated by a report in 2004 by Borhan and

co-workers concerning the synthesis of 3-hydroxytetrahydrofurans

from epoxy alcohols using dimethylsulfoxonium methylide 2,6 we

considered whether 3-hydroxypyrrolidines 5 could be obtained

from aminoepoxides 1 using ylide 27 (Scheme 1).

For the chemistry shown in Scheme 1 to succeed, regioselective

ring-opening of the epoxide by the ylide 2 should be followed by

5-exo-tet cyclisation in preference to oxetane8 formation. It was

anticipated that a suitably acidifying N-protecting group (e.g.

PG = RSO2) would assist pyrrolidine formation, because the

amino functionality would then likely be deprotonated under the

reaction conditions9 (as shown in intermediates 3 and 4). Potential

complications10 due to aziridine formation from intermediate 3

by aza-Payne rearrangement should be avoided by using

epoxysulfonamides 1 (PG = RSO2), since the latter are commonly

accessed by base-induced aza-Payne rearrangement of N-tosyl

2-aziridinemethanols;11 another synthetically useful route to

epoxysulfonamides 1 (PG = RSO2) proceeds by epoxidation of

allylic sulfonamides.12

Direct application of Borhan’s conditions [Me3S(O)I (10 equiv.),

NaH (10 equiv.), DMSO, 85 uC, 24 h]6 to 2-aziridinemethanol 613

gave the desired 3-hydroxypyrrolidine 8a (44%), likely by way of

(deprotonated) epoxysulfonamide 7a from in situ aza-Payne

rearrangement (Scheme 2). However, the potential restriction to

using 2-aziridinemethanols as starting materials, together with the

requirement for a large excess of the ylide 214 and prolonged

reaction time, led us to focus on optimising conditions for

3-hydroxypyrrolidine synthesis from epoxysulfonamides.15,16

Epoxysulfonamide 7a{ (0.1 M in DMSO) was completely

consumed within 70 min following reaction with ylide 2 [3 equiv.,

generated from Me3S(O)I and NaH] at 80 uC, however

3-hydroxypyrrolidine 8a was obtained in only 30% yield, with

no other products being isolated. Generating ylide 2 from

Me3S(O)I (3 equiv.) and n-BuLi (3 equiv.) in THF proved more

encouraging, giving 3-hydroxypyrrolidine 7a in 60% yield after 16 h

at rt (Table 1, entry 1); reduced reaction times at rt gave lower

yields of 8a, with starting epoxide 7a being recovered. Lowering

the concentration of epoxide 7a to 0.02 M slightly reduced the

efficiency of the reaction (entry 2). A modest improvement in the

yield of 7a to 65% was obtained by refluxing the reaction mixture

for 70 min (entry 3).17 The yield of 8a fell when lowering the

amount of ylide 2 (to 2 equiv.) either directly (51%, entry 4), or by

deprotonating epoxide 7a with NaH (1 equiv.) first (52%). Using

NaHMDS as the base also had a detrimental effect on the yield of

8a. However, switching solvent to DMPU gave a significant

increase in yield of 8a (87%, entry 5) and, more usefully, this

improvement was also observed when using DMPU as an additive

(up to 20 equiv.) in THF (entries 6–9). Under the latter conditions,

2 h at reflux was optimal (70 min or 3 h gave slightly reduced

yields of 8a).

A series of epoxysulfonamides 7, prepared in two steps from the

corresponding allylic alcohols by Sharpless aziridination13 followed

by aza-Payne rearrangement11 [KH (4 equiv.), THF, 278 uC to

0 uC, 2 h],{ were then subjected to the optimised conditions
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Scheme 1 3-Hydroxypyrrolidines 5 from aminoepoxides 1.

Scheme 2 3-Hydroxypyrrolidine 8a from aziridinemethanol 6.
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developed above (Table 1, entry 9) to give the corresponding

3-hydroxypyrrolidines 8 in 72–88% yield (Table 2).§

Either trans- or cis-2-substituted-3-hydroxypyrrolidines 8 could

be prepared in good yield, starting from the corresponding anti- or

syn-epoxysulfonamides 7 (entries 1–4). The simple 3-hydroxypyr-

rolidine 8c (entry 5), 2-aryl-3-hydroxypyrrolidines 8d and 8e

(entries 6 and 7), tertiary alcohol-containing pyrrolidine 8f (entry 8)

and 2,2-disubstituted-3-hydroxypyrrolidine 8g (entry 9) were all

accessible using this methodology. The relative stereochemistries of

3-hydroxypyrrolidines 8 were generally determined by NOE

experiments. In the case of 2-aryl-3-hydroxypyrrolidine 8e, the

structure was supported by X-ray crystallographic analysis

(Fig. 1).18

Both spiro- and cis-fused hydroxypyrrolidines 10a and cis-10b

could be made using this chemistry (Table 3, entries 1 and 2).

Interestingly, the more strained trans-fused [4.3.0] system trans-10b

was also successfully generated (entry 3). Epoxysulfonamides 9a

and syn-9b were prepared by epoxidation (the latter in a

highly diastereoselective manner)12 of the corresponding allylic

sulfonamides.{
It has also been found possible to extend the methodology to

a 2,3-disubstituted epoxide, when one of the substituents

supports the ring-opening process. Thus, 2,3,4-trisubstituted

pyrrolidine 12 was formed in 77% yield from epoxysulfonamide

11{ (Scheme 3). The relative stereochemistry was assigned from

NOE experiments.

In summary, we have established a process of useful generality

for the conversion of epoxysulfonamides to stereodefined 3-hydro-

xypyrrolidines. The method uses readily available reagents and

occurs under experimentally straightforward conditions.

Additional studies in the area of epoxysulfonamides and sulfonium

ylides are currently underway.
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Table 1 Optimisation of 3-hydroxypyrrolidine 8a synthesis from
epoxysulfonamide 7a

Entrya DMPU (equiv.) Temperature/uC Time/h Yield (%)

1 — rt 16 60
2b — rt 16 50
3 — Reflux 1.2 65
4c — Reflux 1.2 51
5 Neat 80 uC 2 87
6 5 Reflux 2 69
7 10 Reflux 2 75
8 15 Reflux 2 83
9 20 Reflux 2 86
a 0.1 M in epoxide 7a with n-BuLi (3.3 equiv.) and Me3S(O)I
(3 equiv.) used unless indicated otherwise. b 0.02 M in epoxide 7a.
c n-BuLi (2.3 equiv.) and Me3S(O)I (2 equiv.) used.

Fig. 1 X-Ray structure of 3-hydroxypyrrolidine 8e with thermal

ellipsoids at the 40% probability level.

Table 2 3-Hydroxypyrrolidines 8 from epoxysulfonamides 7

Entry Epoxide 7 Pyrrolidine 8 Yield (%)

1 86

2 83

3 74

4 76

5 72

6 88

7 82

8 80

9 72
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Notes and references

§ Typical procedure for synthesis of 3-hydroxypyrrolidines from epoxysulfo-
namides: n-BuLi (1.6 M in hexanes 0.38 mL, 0.61 mmol) was added
dropwise to a stirred suspension of Me3S(O)I (123 mg, 0.56 mmol) in THF
(1.4 mL) at 278 uC and stirred at this temperature for 15 min, and then at
0 uC for 15 min. The mixture was re-cooled to 278 uC and a solution of
anti-7a (0.19 mmol) in THF (0.5 mL) was added dropwise, followed by
DMPU (0.45 mL, 3.74 mmol) and the reaction then warmed to rt over
5 min and heated to reflux. After 2 h, 5% aq. NH4Cl (10 mL) and EtOAc
(10 mL) were added and the layers separated. The aqueous layer was
extracted with EtOAc (3 6 20 mL) and the combined organic layers were
dried (MgSO4) and evaporated under reduced pressure. The residue was
purified by column chromatography (60% Et2O in petrol) to give the
corresponding trans-8a (45 mg, 86%) as a colourless oil; Rf 0.18 (70% Et2O
in petrol); IR (neat)/cm21 3510br, 2960s, 1599s, 1494s, 1336s, 1156s; 1H
NMR (400 MHz) d 7.74 (d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H), 4.05 (d,
J = 3 Hz, 1H), 3.49–3.44 (m, 2H), 3.24 (ddd, J = 10.5, 9.5, 7 Hz, 1H), 2.41
(s, 3H), 2.06–1.97 (m, 1H), 1.77–1.67 (m, 3H), 1.50–1.33 (m, 2H), 1.26 (br,
1H), 0.94 (t, J = 7 Hz, 3H); 13C NMR (100 MHz) d 143.4, 134.2, 129.5,
127.7, 74.8, 69.1, 46.2, 37.3, 32.4, 21.5, 19.5, 14.0; MS m/z (CI) 301 (M +
NH4

+, 100), 284 (68), 130 (50), 48 (33), 86 (29), 72 (30); HRMS calcd for
C14H25N2O3S (M + NH4

+) 301.1586, found 301.1577.
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Table 3 Spiro- and fused-hydroxypyrrolidines 10 from epoxysulfo-
namides 9

Entry Epoxide 9 Pyrrolidine 10 Yield (%)

1 81

2 69

3 66

Scheme 3 Preparation and determination of stereochemistry of trisub-

stituted hydroxypyrrolidine 12.
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