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Photocatalytic solids, in which the absorption occurs at isolated, spatially well-
separated centres, are particularly useful catalysts for effecting reactions that are
of prime importance in both remedial and preparative contexts. These are
qualities that they share with single-site (thermally-activated) heterogeneous
catalysts; but they have the added advantage of being more readily probed
during the actual processes of catalytic turnover, since they generally function
under ambient conditions, unlike most conventional solid catalysts which usually
operate at elevated pressures and temperatures. Thus, they are amenable to
investigation by (in situ) X-ray absorption (XAFS), FT-IR, UV-Vis, and EPR
spectroscopic studies as well as to photoluminescence measurement. This affords
greater insight into the mechanisms of the photocatalytic reactions as we
illustrate in this short review. Open-structure solids such as mesoporous silica and
zeolitic aluminosilicates offer a generally applicable strategy to design new single-
site photocatalysts such as those described here for the decomposition of NO to
N2 and O2 and for the selective oxidation of CO in the presence of H2.

Single-site heterogeneous catalysts, typi-

fied by those illustrated in Fig. 1, possess

numerous advantageous properties.1

First, because of the spatial isolation of

their active sites, they yield well-defined

products (just as dispersed molecular

homogeneous catalysts do) and, indeed,

immobilization of many homogeneous

catalysts often greatly enhances their

behavior because their aptitude to

undergo bimolecular deactivation is sup-

pressed.2 Second, the spatial separation

of the active sites also makes it easier to
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characterize and identify (in atomic

detail) their nature and their interaction

with reactants by the application of

techniques such as X-ray absorption,3,4

fine structure (at the near edge, XANES

and extended edge, EXAFS), FTIR,

UV-Vis, EPR, photoluminescence, and

microcalorimetry.5–7 Moreover, most of

these techniques may be used under

conditions of catalytic turnover (in situ)

with both liquid and gases at ambient

pressure.3,5,7–10 Finally, as has been

elaborated in previous work,1 they offer

a generally applicable strategy for the

design of new heterogeneous catalysts

involving many novel conversions and

syntheses and a range of oxidations,

reductions, alkylations and amina-

tions.3,10,11 They also facilitate the design

of bi-functional catalysts such as those

that convert cyclohexanone to caprolac-

tam by the parallel agency of redox and

Brønsted acidic active site centres.12

Ever since Honda and Fujishima13

demonstrated the UV light-induced clea-

vage of water using a TiO2 photo-

electrode, there has been enormous

interest in the use of TiO2 and other

extended oxide and chalcogenide semi-

conductors for the related purposes of

environmental remediation, where toxic

materials at low concentrations are

photocatalytically converted to harmless

oxidation products.14 TiO2 as a photo-

catalyst has many attractive features: a

convenient band gap between its valence

band and conduction band of 3.0 eV

(400 nm) (Fig. 2), high stability, low cost,

Fig. 1 Well-established examples of single-site, thermally-activated (D), heterogeneously

catalysed processes.

Fig. 2 From TiO2 semiconductors to Ti-oxide single-site catalysts. Illustration of: size quantization effect, small particle effect, and change in

coordination number.
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non-toxicity and good performance in

the oxidation of organic pollutants to

CO2 and H2O.15

For the reactions that concern us here

(see below), however, there is little merit

in using the extended solid, where Ti4+

ions are in six-fold coordination.

2NO A N2 + O2

CO + KO2 A CO2

CO2 + H2O A CH3OH + CH4

Instead it is better, as becomes clear

from the arguments and examples that

follow, to capitalize on the charge-

transfer excited state5 that forms with

tetrahedrally coordinated Ti4+ ions when

bound to oxygen (or oxygen and an OH2

group), as in Scheme 1.3b,16

Precisely the same situation that

applies to four-coordinated Ti4+ is also

valid for two-coordinated Cu+ ions when

present as spatially separated entities

such as extra-framework cations in zeo-

lites of high Si : Al ratio as in ZSM-5 and

Y-zeolite.

From the application of the various

techniques of in situ characterization

depicted in Fig. 3, we can deduce the

reaction mechanism along with details of

the individual steps involved for the

conversion of NO to its component

parts:4,17,18 the first NO molecule forms

a nitrosyl adduct at the 2-coordinated

Cu+ active site; an electron is transferred

from the excited Cu+ (3d94s1) state into

the p-anti-bonding orbital of NO, and

this is followed by the donation of an

electron from another NO molecule into

the Cu+, thereby yielding two contiguous

(N…O) species adsorbed to the active

centre. Liberation of the two gases occurs

when these contiguous species combine:

2(N…O)ads A N2 + O2

It is to be noted that the 2-fold

coordination of Cu+ along with the Cu–

O bond distance of the initial active

site, as well as the FTIR and EPR

fingerprints of the nitrosyl adducts

are determined by in situ experiments.

It is also seen that Cu+/ZSM-5 is

significantly better than Cu+/Y-zeolite

as a photocatalyst, a fact that could arise

from the greater polarizing electrostatic

field at the Cu+ ions in the narrower

pore ZSM-5.17,18

Scheme 1 The formation of charge transfer excited state with tetrahedrally coordinated

titanium oxide moieties by UV light adsorption and their radiative decay process

(phosphorescence).15,16

Fig. 3 Photocatalytic decomposition of NO into N2 and O2 on Cu+ single-site catalysts prepared within ZSM-5 zeolite.
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Reverting to the single-site Ti4+ oxo-

centered catalyst (Fig. 4), it is seen that

its performance both in the decomposi-

tion of NO and in the reduction of

CO2 with H2O improves the more

spatially separated the Ti4+ oxo ions are

and the lower their degree of coordina-

tion, which facilitates the formation

(compare with Fig. 1) of the charge-

transfer localized excited state.19,20 It is

not unexpected that the quantum yield of

the CO2 + H2O A CH3OH + CH4

reaction is substantially smaller than

that of the decomposition of NO, as

the former process requires a more

demanding configuration of co-adsorbed

reactants involving six participating

atoms.

So far as the photo-oxidation of CO by

O2 is concerned—an important reaction

in fuel cell technology21 since it is

essential to remove CO impurities from

H2 otherwise electrode performance is

poisoned—we are again led to a plausible

mechanism (Fig. 5) based on the known

structures, as determined by XAFS, of

the single-site Mo6+O4 centre.22 Again a

charge-transfer excited triplet state is

implicated (and observed), and good

quantum yields are obtained. This sin-

gle-site photocatalytic method of purify-

ing H2 from its unwanted CO impurity is

an alternative to the thermally-activated

heterogeneous catalytic method of

achieving the same end using a Pt–Fe

and other noble-metal catalysts sup-

ported on alumina.21

The advantages of single-site solid

catalysts seen here in the context of

harnessing solar energy are already

well-recognized in many thermally-acti-

vated processes, including both those of

prime industrial or commercial value

such as the wide range of selective

oxidations using either H2O2
23 as a liquid

oxidant or acetyl peroxyborate as a solid

oxidant24 and others of currently mainly

academic interest.25
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