Reversible physical absorption of SO₂ by ionic liquids[†]

Jun Huang,^a Anders Riisager,^{*a} Peter Wasserscheid^b and Rasmus Fehrmann^a

Received (in Cambridge, UK) 10th July 2006, Accepted 2nd August 2006 First published as an Advance Article on the web 17th August 2006 DOI: 10.1039/b609714f

Ionic liquids can reversibly absorb large amounts of molecular SO_2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO_2 to probe the internal cavity structures in ionic liquids besides being useful for SO_2 removal in pollution control.

Room-temperature ionic liquids (ILs) are low-melting salts with extremely low vapour pressures, high thermal and chemical stability, and tuneable solvent power for many organic and inorganic compounds. Due to these characteristics they can be used as environmentally benign solvents for a number of chemical applications, such as separations and catalytic reactions.¹

Imidazolium-based ILs, which constitute a representative class of ILs, have been found to display dynamic, locally heterogeneous environments,² which allow their use as media for preparation of noble metal nanoparticles useful for different catalytic applications and for synthesis of other nanostructured materials.³ Moreover, absorption studies of CO₂ gas in 1-*n*-propylamine-3-butylimida-zolium tetrafluoroborate by Bates *et al.*⁴ indicated that the IL can absorb CO₂ from gas mixtures effectively at ambient pressure. Previous studies have mainly reported that ILs can dissolve many gases, such as CO₂, ethylene and ethane, especially at high pressure.⁵

SO₂ emission is a significant source of atmospheric pollution when fossil fuels are combusted, causing both environmental and human health concerns due to formation of, e.g. acid rain and smog. In contrast, SO₂ is also an important and useful source for many intermediates in chemical production. At present, flue-gas desulfurization (FGD) is one of the most effective techniques to control emission of SO₂ from combustion of fossil fuels, such as coal and petrol. A variety of processes for SO₂ control (e.g. wet FGD, dry FGD, and semidry FGD processes) have been adopted widely in commercial units.⁶ Usually, however, the most attractive approaches for SO₂ gas separation are pressure swing absorption (PSA) or temperature swing absorption (TSA) technologies, which are energy saving compared to FGD processes and avoid byproducts while allowing the SO₂ to be used as a direct source for sulfuric acid production.⁷ For practical use it is nevertheless difficult to find a material for reversible and selective absorption of SO₂. Generally aqueous liquid amines can be applied for

chemically confining acidic gases, like CO_2 and SO_2 , by formation of ammonium carbonate or sulfite. But in the case of large-scale SO_2 capture, amines can evaporate into the gas stream due to their volatility, and the SO_2 proves difficult to desorb from ammonium sulfite. Similarly, water has been found to be a good solvent for SO_2 gas, but when SO_2 gas dissolves in water most of the SO_2 gas reacts with water and converts it into sulfurous acid, which only liberates SO_2 gas on heating.⁸ Recently, Han *et al.*⁹ described a suitable methodology using an IL (TMGL: 1,1,3,3-tetramethylguanidinium lactate) which could absorb 1 mole of SO_2 at 1 bar by formation of the guanidinium sulfurous acid cation. However, a relatively low thermal stability of the IL limited its general practical use, as only part of the absorbed gas could be released upon heating before IL degradation occurred.

In this Communication, we report that several ILs—most likely as a general feature—are found to be excellent solvents for SO₂ gas, providing physical absorption of the gas. ILs based on both 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF₄]) and the analogous bis(trifluoromethanesulfonyl)amide ([BMIM][BTA]) and new ILs based on TMG prepared here, [TMG][BF₄], [TMG][BTA] and [TMGB₂][BTA] (see Scheme 1), were found to readily absorb 1–2 mole SO₂ per mole of IL reversibly at ambient pressure and room temperature without any chemical transformation.

The [TMG][BF₄] and [TMG][BTA] ILs were prepared by neutralization of TMG with fluoroboric acid (HBF₄) and HBTA in ethanolic solution (see Supporting Information).^{3a} The IL [TMGB2][BTA] was synthesized by alkylation of TMG with *n*-iodobutane (C₄H₉I)¹⁰ followed by anion exchange (see Supporting Information). [BMIM][BF₄]¹¹ and [BMIM][BTA]¹² were prepared by literature procedures. For the SO2 gas absorption experiments the gas stream was bubbled through about 3.0 g of IL loaded into a glass tube with inner diameter of 10 mm with a flow rate adjusted to 50 ml min⁻¹. When the IL was saturated with SO₂ gas the weight became constant. For SO₂ desorption the glass tube was partly immersed in an oil bath with a temperature controller. During desorption the weight of the IL solution was determined periodically at different set-temperatures. When no SO_2 gas was released at the set-temperature, the solution was weighed.

Scheme 1 The novel ILs based on TMG (1,1,3,3-tetramethylguanidine) which were prepared and examined in this study: [TMG][BF₄], [TMG][BTA] and [TMGB₂][BTA].

^aDepartment of Chemistry and Center for Sustainable and Green Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark. E-mail: ar@kemi.dtu.dk; Fax: (+45) 45252235; Tel: (+45) 45252233

^bLehrstuhl für Chemische Reaktionstechnik, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany

[†] Electronic supplementary information (ESI) available: Experimental details on ionic liquid synthesis, absorption/desorption experiments and FT-IR and NMR spectra of ILs and SO₂ gas-saturated ILs. See DOI: 10.1039/b609714f

The ILs examined were found to absorb a large amount of SO_2 gas corresponding to molar ratios of SO_2 to ILs of 1.33, 1.50, 1.27, 1.18, 1.60, (wt %: 20.4%, 40.0%, 40.1%, 19.2% and 20.1%) for [BMIM][BTA], [BMIM][BF4], [TMG][BF4], [TMG][BTA] and [TMGB₂][BTA], respectively, after being saturated with SO_2 gas at 1 bar and 20 °C. Desorption of the absorbed SO_2 was carried out by heating the saturated ILs, while the weight loss was monitored periodically. In Fig. 1 (top) the SO_2 content in the ILs (as molar ratio of SO_2 to IL) is shown as a function of the desorption temperature. For all the ILs examined the SO_2 gas can be completely desorbed when heated to about 140 °C.

Both absorption and desorption of SO₂ gas in the five examined ILs (*i.e.* [BMIM][BTA], [BMIM][BF4], [TMG][BF4], [TMG][BTA], [TMGB₂][BTA]) were relatively fast, providing complete absorption in one hour with pure SO₂ gas (50 ml min⁻¹, 200 rpm stirring), and complete gas desorption in half an hour at room temperature and 20 Pa vacuum. However, the absorption and desorption times are very dependent on the exposed surface area of the IL, thus making room for considerable improvement. Moreover, the ILs can be reused many times without any loss of absorption capability. In Fig. 1 (bottom) six consecutive absorption cycles with the ILs are shown.

There is no difference in the proton chemical shift or $\Delta \delta_{\rm H}$ of the [TMG]⁺ cation in the ¹H NMR spectra of the ILs [TMG][BF₄], [TMG][BTA] and [TMGB₂][BTA] and the ILs saturated with SO₂

Fig. 1 SO₂ desorption by heating shown as mole ratio of SO₂ to IL *versus* temperature (top). Consecutive absorption and desorption (20 °C, 20 Pa vacuum) of SO₂ gas in recycled ILs against time (bottom). Standard deviations of the ratios are ± 0.03 .

gas, which means there is no new chemical (covalent) bond involving hydrogens formed between the IL cations and SO₂ during absorption (Fig. 2, exemplified with comparison of the spectra of [TMG][BF4]). Similarly, in FT-IR spectra recorded of the ILs and the SO₂ saturated ILs, only additional bands assignable to molecular SO₂ ($v_{max} = 1376$ and 1360 cm⁻¹, O–S–O asym. str.)¹³ were observed (Fig. 3, comparison of the spectra of [TMG][BF4], as example). From these results, it is evident that the SO₂ gas must be purely physically absorbed in the ILs (governed only by weak interactions, such as hydrogen bonds, van der Waals forces, π – π interactions and Coulombic interactions), providing no

Fig. 2 ¹H-NMR spectra (300 Hz) of ILs [TMG][BF₄] (top) and [TMG][BF₄] with SO₂ gas (bottom) (solvent-free, d^6 -DMSO capillary as internal standard).

Fig. 3 FT-IR spectra (KBr tablet) in the range $1200-1600 \text{ cm}^{-1}$ of ILs [TMG][BF₄] and [TMG][BF₄] with absorbed SO₂ gas.

chemical bond between the ILs and SO₂. Possibly, the presence of two S–O stretching bands, as also found in solid-state spectra of SO₂,¹³ could indicate a restricted movement of the captured SO₂ resulting in two different S–O bond distances with one being notably short (*i.e.* shift of v_{max} towards higher frequency).

Also, from comparison of the SO₂ absorption curves (Fig. 1) and identical ¹H-NMR and FT-IR spectra (Supporting Information and Fig. 2) of [TMG][BF₄] and [TMG][BTA], it is apparent that the anion did not influence the interaction of SO₂ with the ILs. In contrast, the nature of the cation did influence the absorption capability slightly.

When attempts were made to get 10% SO₂ gas (10 mole percent in N₂) absorbed in the ILs in order to simulate flue gas removal, only 0.007, 0.005, 0.064, 0.061, 0.080 (SO₂ molar ratio to ILs) SO₂ gas was absorbed in [BMIM][BTA], [BMIM][BF4], [TMG][BF4], [TMG][BTA] and [TMGB₂][BTA], respectively, due to competing N₂ absorption (no measurable weight increase was observed when ILs were exposed to pure N₂). The absorption capability probably relates to the strength of the electrostatic force between IL cation and SO₂ gas. Thus, the interaction between ILs based on [TMG]⁺ and SO₂ is stronger than that of the ILs based on the [BMIM]⁺ cation. A more conclusive examination of the interaction between IL cations and SO₂ gas and the cation effect on absorption capability will be the subject of later studies.

The local structure (see above) in ILs could provide a possible explanation for the pronounced SO₂ gas dissolution in ILs. Previous experimental and computational reports on CO₂ gas absorption in ILs suggest that CO₂ is taking up free space from void cavities already available in the rigid and intricate topography of ILs when CO_2 dissolves in ILs.^{2,56} As SO_2 is a polar gas, the void space originally available in ILs should be taken up much more easily by SO₂ gas. The volume of ILs increased significantly during gas absorption (about 22%, 45%, 45%, 23% and 25% volume increase for [BMIM][BTA], [BMIM][BF₄], [TMG][BF₄], [TMG][BTA] and [TMGB2][BTA], respectively). This could relate to the fact that the molecular radius of SO_2 is larger than the cavities present in the ILs or more SO₂ molecules are confined in the cavities – in particular for the ILs containing the smaller [BF₄]⁻ anion where the volume increase is about twice that for the analogous [BTA]⁻ anion-based ILs, most likely due to the smaller cavities present. On-line thermal measurements (i.e. TGA, DSC) of the physical absorption of SO₂ by the ILs at different temperatures and SO₂ partial pressures are in progress to provide additional insight into the structural re-ordering of the ILs during gas exposure.

In summary, we have demonstrated that ILs most likely as a general feature (shown here for ILs based on the $[BMIM]^+$ - and the $[TMG]^+$ -cation) can physically absorb large amounts of SO₂ gas (1.1–1.6 moles SO₂ per mole IL) at room temperature and ambient SO₂ pressure. The absorbed SO₂ gas remains in the

molecular state without any chemical reaction during absorption in all the ILs [BMIM][BTA], [BMIM][BF4], [TMG][BF4], [TMG][BTA] and [TMGB₂][BTA]. The absorbed SO₂ gas can be readily desorbed from the ILs by applying a vacuum or by heating, allowing the ILs to be reused several times for consecutive absorption/desorption cycles without loss of capability. It is believed that ILs may be useful for SO₂ removal regarding pollution control. Furthermore, studies using SO₂ as a guest molecule in ILs could provide important information about the structural details of ILs. Additionally, the ILs may be designed with optimal type and number of functional groups with respect to selective SO₂ capture and appropriate desorption conditions. This approach will be examined in future work.

The work was supported by the Danish Research Council for Technology and Production under Grant No. 26-04-0139.

Notes and references

- (a) P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3772; (b) T. Welton, Chem. Rev., 1999, 99, 2071; (c) J. Dupont, R. F. Souza and P. A. Z. Suarez, Chem. Rev., 2002, 102, 3667; (d) A. Bosmann, G. Francio, E. Janssen, M. Solinas, W. Leitner and P. Wasserscheid, Angew. Chem., Int. Ed., 2001, 40, 2697; (e) R. P. Singh, R. D. Verma, D. T. Meshri and J. M. Shreeve, Angew. Chem., Int. Ed., 2006, 45, 3584; (f) A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann and P. Wasserscheid, Angew. Chem., Int. Ed., 2005, 44, 815; (g) L. Crowhurst, N. L. Lancaster, J. M. P. Arlandis and T. Welton, J. Am. Chem. Soc., 2004, 126, 11549.
- 2 (a) Z. Hu and C. J. Margulis, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 831; (b) X. Huang, C. J. Margulis, Y. Li and B. J. Berne, J. Am. Chem. Soc., 2005, 127, 17842.
- (a) J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and G. Zhao, *Angew. Chem., Int. Ed.*, 2004, **43**, 1397; (b) J. Huang, T. Jiang, B. Han, H. Gao, Y. Chang, G. Zhao and W. Wu, *Chem. Commun.*, 2003, 1654; (c) M. Antonietti, D. Kuang, B. Smarsly and Y. Zhou, *Angew. Chem., Int. Ed.*, 2004, **43**, 4988.
- 4 E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, Jr, J. Am. Chem. Soc., 2002, 124, 926.
- 5 (a) J. L. Anthony, E. J. Maginn and J. F. Brennecke, J. Phys. Chem. B, 2002, **106**, 7315; (b) C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke and E. J. Maginn, J. Am. Chem. Soc., 2004, **126**, 5300; (c) A. M. Scurto, S. N. V. K. Aki and J. F. Brennecke, J. Am. Chem. Soc., 2002, **124**, 10276.
- 6 X. Ma, T. Kaneko, T. Tashimo, T. Yoshida and K. Kato, *Chem. Eng. Sci.*, 2000, 49, 4643.
- 7 S. M. Jeong and S. D. Kim, Ind. Eng. Chem. Res., 2000, 39, 1911.
- 8 T. L. Tarbuck and G. L. Richmond, J. Am. Chem. Soc., 2006, 128, 3256.
- 9 W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang and J. Huang, *Angew. Chem., Int. Ed.*, 2004, **43**, 2415.
- 10 (a) A. V. Santoro and G. Mickevicius, J. Org. Chem., 1979, 44, 117; (b) General Electric Company, US Pat., 5 082 968, 1992.
- 11 P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. de Souza and J. Dupont, *Polyhedron*, 1996, 15, 1217.
- 12 P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, *Inorg. Chem.*, 1996, 35, 1168.
- 13 M. Falk and P. A. Giguere, Can. J. Chem., 1958, 36, 1121.