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The principles of social and biological evolution have been

combined in a Cultural Differential Evolution hybrid global

optimization technique and applied to crystal structure

solution.

Evolutionary algorithms are being increasingly used to solve a

variety of global optimization problems in chemistry, nanoscience

and bioinformatics.1 These powerful techniques are inspired by

natural evolutionary processes, and mimic the principles of

biological evolution and survival of the fittest to explore parameter

space. However, the biological evolution of natural systems can be

a slow process, especially compared to the rate of cultural

evolution in a society when adapting to changing social

environment. Cultural algorithms2 have been developed to model

behaviour based on the principles of human social evolution, and

can be used to bias the search process by passing experience and

knowledge of behavioural traits of a population from one

generation to the next. In simple terms, this cultural information

can be used to reduce the search space of a standard biological

evolutionary algorithm, improving both performance and effi-

ciency of the global optimization process.3 In this paper, we report

modification of the Differential Evolution (DE) global optimiza-

tion algorithm, by incorporation of the concept of Cultural

Evolution, with the aim of increasing the efficiency of DE when

applied to crystal structure solution from powder diffraction data.

Although DE is a relatively new evolutionary algorithm,4 it has

proved highly effective in a range of chemical contexts, including

X-ray scattering,5 crystal growth epitaxy,6 optimization of

clusters,7 protein crystallography,8 molecular docking,9 disordered

crystal structures10 and the direct-space crystal structure solution

of organic molecules from powder diffraction data.11 The direct-

space approach to structure solution12 involves generation of trial

crystal structures in real space, by placing a structural model of the

molecule inside the unit cell, independent of the diffraction data. A

calculated powder diffraction profile is then compared to the

experimental pattern to assess the ‘fitness’ of each structure.

Global optimization techniques, such as Monte Carlo,13 simulated

annealing14 or evolutionary algorithms11,15 are used to find the

minimum point on the fitness landscape (or hypersurface),

corresponding to the correct crystal structure.

In this work, the DE algorithm operates by generating a

randomly distributed population of trial structures that is mated

and mutated over a number of generations until the global

minimum is located. Child structures are created using information

from current members of the population by carrying out

recombination and mutation in a single step.4 The child structure

is then directly compared to each parent such that the fitter of

the two is retained, constantly updating the population and

adapting to the fitness hypersurface. The values of K and F (the

rates of recombination and mutation respectively), and the

population size Np, are chosen to achieve a balance between

optimal fitness of the solutions and the time taken for the

calculation to converge.11

The dimensionality of the hypersurface, and hence the complex-

ity of the optimization problem, is determined by the number of

variables used to define the structural model for crystal structure

solution (e.g. position (x, y, z), orientation (h, Q, y) and torsion

angles to describe molecular conformation (t1…tn)). In DE, each

of these variables has associated minimum and maximum

boundary values which are used to reset each variable to a point

between the boundary and parent values, if the child structure

exceeds the corresponding limit. For a general case allowing

unconstrained molecular movement, this would typically involve

boundary values of [0,1] for fractional position and [0,360u] for

overall molecular orientation and intramolecular torsion angles.
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Fig. 1 Distribution of the x variable of the child structures (circles)

generated during a DE calculation, (a) with static boundaries and (b)

dynamic boundaries (the solid line indicates the boundary position).
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These inherent boundary conditions can also be used to restrict the

DE search to specific regions of the hypersurface, allowing

incorporation of structural constraints such as limits in molecular

conformation, without disrupting natural optimization pathways.

In the original DE algorithm, these boundary values remain

constant throughout the structure solution calculation. However,

examination of the child structures generated during a DE

calculation with static boundaries shows that the random initial

distribution in the values of a variable develops clustering as the

calculation progresses (Fig. 1a). This distribution provides us with

information that can be used, by incorporation of the concept of

Cultural Evolution, to guide the DE search itself. In our

implementation of the Cultural Differential Evolution hybrid

algorithm (CDE), the behaviour of previous generations is used to

influence subsequent generations using dynamic boundaries to

restrict the search to low-lying regions of the hypersurface, and

effectively prune population space. This mechanism of combining

the two approaches is simple to implement and interpret in ‘real-

world’ applications where parameter distribution and the resulting

boundary conditions can also have physical meaning. It differs

from that of Becerra et al.16 in which the DE static boundaries are

retained, and cultural evolution is used instead to influence the DE

variation operator. The use of dynamic boundaries has a dramatic

effect on the distribution of structure variables in the DE

calculation. In the example given, the x variable is allowed to

take values 0 ¡ x ¡ 1 throughout the conventional DE

calculation (Fig. 1a), whereas in the CDE, the search was restricted

to 0.2 ¡ x ¡ 0.7 after only 90 generations (Fig. 1b).

In our CDE algorithm, the original boundary conditions are

initially maintained to avoid encouraging premature convergence

to local minima (e.g. 50 generations, Fig. 1b). After this period, a

virtual histogram of child parameters is constructed for each

variable within a generation (Fig. 2). This detects any clustering,

and identifies at what values the dynamic boundaries are set by

imposing an ‘underpopulation threshold’ at the maximum and

minimum ends of the distribution. By defining the dynamic

boundaries by exclusion of ‘outliers’ rather than inclusion of

‘popular’ values, potential problems with multi-modal distribution

and over-aggressive culture-based pruning are avoided. Fig. 2

shows distribution of the x variable over a population of

70 structures, divided over 22 histogram bins. In this case, the

underpopulation threshold (Nut) at each end of the distribution is

set to four structures, and the end bins removed until the threshold

is reached. In order to allow the possible expansion of the

boundaries with successive generations, one bin is then reinstated

at each extreme, and the maximum and minimum of these

remaining categories used as the new dynamic boundary values for

the next generation. These boundaries are then invoked in the DE

calculation as described earlier.

In this paper, performance of the CDE is illustrated by the

structure solution of (i) a test case, baicalein17 (I) and (ii) an

unknown crystal structure, a-methyl-a-propyl succinimide (II). In

both cases, the structure solution used a model comprising the

whole molecule (excluding hydroxyl, methyl and amide hydrogens

where applicable), and allowed translation throughout the unit

cell, rotation in all directions and intramolecular rotation defining

molecular conformation (Scheme 1). Baicalein was studied initially

using the DE approach (static boundaries) with five DE runs

performed for each combination of control parameters K 5 0.99,

Np 5 105 and F 5 0.4, 0.5 and 0.6 (Fig. 3). Corresponding sets of

CDE calculations were then performed using Nut 5 3,4,…,7, with

the same DE control parameters (Fig. 3). These results show a

significant and consistent gain in the efficiency of the calculation

with the CDE algorithm converging up to 54% quicker when

averaged over the five runs for each set of parameters (i.e. F 5 0.6,

Nut 5 7). Similar results have been obtained for other values of Np,

and for other test structures.18 It is also clear from these results that

the optimal choice of Nut is, as expected, dependent on the

combination of the other DE control parameters.

In the case of (II), the powder diffraction pattern was indexed as

monoclinic, P21/c, with Z = 1. The CDE calculation was run

several times with the optimal control parameters K 5 0.99,

F 5 0.5, Np 5 80 and Nut = 4 until convergence was reached. The

best solution had Rwp 5 13.2% (mean Rwp # 33%) (Fig. 4), and

this structure was used as the starting point for successful Rietveld

refinement{ (Fig. 5). This structure was also identified as the global

minimum by a subsequent set of conventional DE calculations,

using the same optimization control parameters, but requiring

significantly longer convergence, i.e. the optimum CDE calculation

converged after only 461 generations, whereas the optimum DE

calculation needed 988 generations for convergence (Fig. 4).

Fig. 2 Bins are removed from the histogram until the underpopulation

threshold is reached (shaded regions), but one bin at each extreme is

reinstated to give the new boundaries (dotted lines).

Scheme 1 Structural models of baicalein (I) and a-methyl-a-propyl

succinimide (II). Arrows show variable torsion angles.

Fig. 3 The mean rate of convergence for successful DE and CDE runs

(those converged to the global minimum). The colour of each box denotes

the % of successful runs for each set of control parameters.
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The crystal structure of (II) (Fig. 6) contains stacks of

centrosymmetric N–H…O(LC) R2
2(8) dimers with C–H…O

interactions between molecules in adjacent dimers forming

additional R2
2(12) motifs within the stacks. A further C–H…O

hydrogen bond produces a C(6) spiral running in the [010]

direction between adjacent stacks. Combination of these motifs

results in the formation of a hydrogen-bonded layer parallel to

(100) with only weak hydrophobic interactions between the layers.

We have demonstrated that the Cultural Differential Evolution

hybrid algorithm shows significantly quicker convergence on the

global minimum when applied to crystal structure solution (an

average of 40% improvement in tests18). The use of dynamic

boundaries which are allowed to expand or contract with

successive generations is an essential feature of our implementa-

tion, ensuring that the process does not become too restrictive. It

allows the algorithm to follow population clustering that, while

unlikely to expand in terms of parameter range, may shift in terms

of absolute parameter values as the population evolves. Our work

describes the first application of the concept of cultural evolution

in a chemical or crystallographic context, and demonstrates the

major gains in optimization efficiency that can be achieved by

combining the dictates of biological and social evolution.
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Notes and references

{ Crystallographic data for (II) C8H13NO2: Mr 5 155.20, a 5 12.301(2),
b 5 6.0698(4), c 5 11.6656(4) Å, b 5 100.958(4)u, V 5 855.1(2) Å3, P21/c
(no. 14), Z 5 4, Dc 5 1.2055(2) g cm23, T 5 293 K.

Data collection and Rietveld refinement: Sample purchased from Aldrich,
powder diffraction data (10 ¡ 2h ¡ 60u in 0.020u steps over 1 h) collected
on a Bruker-AXS D5000 using Ge-monochromated Cu-Ka1 radiation and
a linear PSD Rietveld refinement of all atom positions (except methyl and
amide H in calculated positions) using geometric soft restraints (weighting
factor of 0.001 for bond distances, 0.005 for geminal non-bonded
distances), isotropic displacement parameters (non-H only) constrained
by atom type, preferred orientation along [100]: ratio 5 1.589. Final
refinement gave Rwp 5 6.33%, Rp 5 5.08%, x2 5 1.085.

CCDC 613003. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b609138e
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Fig. 5 Final observed (circles), calculated (solid line) and difference

(below) X-ray powder diffraction profile for the final Rietveld refinement

of (II). Reflection positions are also marked.

Fig. 6 Crystal structure of (II). Only H atoms involved in hydrogen

bonding (indicated by dashed lines) are shown. Selected intermolecular

distances: N(H)…O, 2.80(1) Å; C(H)…O, 3.49(1) and 3.49(1) Å.

Fig. 4 DE progress plot showing the best Rwp (circles) and mean Rwp

(line) for each generation in (i) the optimum CDE calculation and (ii) the

optimum DE calculation for (II).
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