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It is nearly fifty years since Willard Gibbs’ first papers on 
thermodynamics were published,2 and more than thirty years 
since the most important of them were translated into German. 
In  his preface to the German edition,3 Ostwald says: “The impor- 
tance of these studies can best be characterized by the fact that a great 
prtrt of the relations since discovered, which have led to so memorable 
an evolution in our knowledge of physical and chemical equilibria, are 

treasures they contain, only a small part has yet been exploited.” 
The treatise “On the equilibrium of heterogeneous substances” 
has been translated into French by Le Chatelier,4 who compares 
the influence of Gibbs on the development of chemistry to that of 
Lavoisier himself; and only a few years ago a French translation6 
of the “Abstract”6 appeared, provided with copious explanatory 
notes by Georges Matisse. 

In  these papers, so much appreciated abroad, Gibbs postulated 
the two laws of thermodynamics, invented what functions were 
necessary to put them into convenient mathematical form, and 
without further assumptions deduced from them the criteria of 
chemical equilibrium and shewed what experimental data were 
necessary in any given case for the solution of the problem pre- 
sented. He also shewed how these data can be collected in the 

Osmotic pressures ................................................ 336 
Solubilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336 

contained explicitly or implicitly in these papers . . . .  of the 

2 Trans. Connecticut Acad., 2,309, 382 (1873); 3 ,  108 (1876), 343 (1878). 

4 Equilibre des systbmes chimiques, Paris, 1899, Gauthier-Villars. 
Thermodynamische S tudien ,  Leipzig, 1892, Engelmann. 

L’hqquilibre des s y s t h e s  heterogenes, expos6 abrdgd, Paris, 1919, Gauthier- 
Villars. 

8 Am. Jour. Sci., (3) 16, 441 (1878). 
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form of a “fundamental equation,” so that by means of the criteria 
of equilibrium and one such equation for each phase all thermo- 
dynamic problems can be solved algebraically; the corresponding 
graphical method, in which the “fundamental equation” is re- 
placed by a curve or surface has been developed in Holland by 
van Rijn van Alkemade,7 Roozeboom8 and Schreinemakers. 

Until in 1906 “The Scientific Papers of J. Willard Gibbs” 
appeared,“J his thermodynamical work was inacessible in English; 
even yet there is no cheap edition of the treatise on the equilibrium 
of heterogeneous substances, and, so far as I am aware, no English- 
speaking university has prescribed it as a text. Courses of in- 
struction and text-books dealing with “the phase rule” from a 
purely qualitative point of view are generally provided; “Le 
Chatelier’s law,” also qualitative, is taught. On the quantitative 
side, formulas for special cases of certain of the simpler equi- 
libria-freezing-points, boiling-points, osmotic pressures, etc., of 
t wo-component systems-are a necessary ingredient of every 
text-book of physical chemistry; but these formulas are arrived 
at  by a method very different from that of Gibbs. Molecular 
hypotheses, which however admirable in themselves have no 
place in a thermodynamic argument, are put in the foreground; 
special assumptions which greatly restrict the validity of the 
conclusions are made a t  the outset; the formulas that result are 
only those derivable from Gibbs’ fundamental equation for 
“perfect” gaseous solutions adapted to liquids by neglecting their 
compressibility; how to handle the un-ideal chemicals met in 
daily practice is not shewn. Very few students after such train- 
ing are aware that all the problems of chemical equilibrium can be 
solved if the necessary experimental data are available and none 
if they are not; fewer know what data must be secured; and fewer 
still could solve any but the specialized problems of the text- 
books even if the data were supplied. 

Zeit. phys. Chem., 11, 289 (1893). 
Zeit. phys. Chem., 12, 369 (1893). 

lo Edited by Bumstead and Van Name; London, 1906, Longmans, Green & Co., 
vol. I. Thermodynamics; vol. 11, Dynamics, Vector analysis andmultiple algebra, 
Electromagnetic theory of light, and Miscellaneous papers, 
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Eventually this will be changed by pressure from without, by 
demand for men capable of applying thermodynamic methods 
to the solution of technical problems. But why wait for pressure? 
If the trouble lies in inadequate mathematical preparation of 
the students, as has often been suggested, the remedy lies in 
our own hands. Already every serious student of chemistry 
attends “a course on the calculus;” these courses are offered 
at the request of the chemical staffs but it has been left to 
the mathematicians to decide on their content, and naturally 
enough the course provided is the standard elementary 
course, evolved for other groups of students and wholly un- 
adapted to our special needs. Kot from unwillingness to help, 
we may be sure; not because the chemist needs anything that 
their instructors cannot readily supply; but how can we expect 
our colleagues to anticipate our wants and make a change unless 
we tell them what we need‘? 

The standard elementary course on the calculus deals almost 
exclusively with explicit functions of a single variable, and the 
drill consists of practice in differentiating them and in integrating 
complicated expressions carefully selected because reducible to  a 
few canonical forms. Facility in this technique is of little service 
to the student of physical chemistry; in his own problems more- 
over he has to deal with functions of at  least four independent 
variables, seldom presented in explicit form. Besides instruction 
in a few important mathematical properties of such functions, 
what our students need is drill in handling numbers as they come 
from the laboratory: construction of graphs and tables, use of 
interpolation formulas, practice in graphical and numerical differ- 
entiation and integration. This the standard course does not 
supply; but who will say that a course devised to meet our necessi- 
ties need be longer or more difficult or less educative than the 
other? It could not fail to be more interesting to those for whom 
it was designed. 

The present paper begins with an examination of the mathe- 
matical properties of the physico-chemical functions; these fix 
the nature of the mathematical training required by men who wish 
to use them. The functions of thermodynamics are then de- 
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fined; their mathematical relations are but a special case of what 
precedes. The rest of the paper is devoted to equilibria of a 
simple type, it aims to shew how these familiar problems fare 
when handled by the methods due to Gibbs: first the two laws, 
next the criteria of equilibrium under the conditions of the experi- 
ments, then the general solution free from special assumptions 
valid only for restricted groups, and Gibbs’ way of condensing 
such assumptions in a “fundamental equation”; a t  the close m 
illustration of the use of an abacus to solve a well known problem. 
Electrochemical illustrations are omitted, the effects of gravity, 
capillarity, and states of strain in solids are ignored-though not 
by Gibbs-for what is needed at  the present day is widespread 
knowledge of the means by which these problems fifty years ago 
were solved, and contrast between old and new is best brought 
out by simple i n 4  L) ances. 

MATHEMATICAL PROPERTIES OF THE PHYSICO-CHEMICAL 
FUSCTIOKS 

1. Functions de$ned with reference to a phase“ 

Tables of the physico-chemical properties of solu- 
tions (a table of the densities of sulphuric acid solutions may 
serve as example) are constructed by graphic interpolation from 
a limited number of experimental data; the fact that different 
computers obtain much the same tabulated values from the same 
experimental results shews that there is general agreement as to 
the nature of the curves to be drawn, that  is, as to some of the 
mathematical properties of the functions they represent : 

ii) The curve, and therefore the function, is presumed to be 
continuous. 

(ii) It is “smooth,” or free from kinks; Le., the function is as- 
sumed to admit of but one derivative a t  each point. 

(iii) It is “direct,” i.e., as free as possible from the unwelcome 
waviness often met with in the graphs of simple power series 

SoZutions. 

A mass “uniform throughout not only in chemical composition but also 
in physical state”.  . , . “All bodies which differ only in quantity and form 
may be regarded as different examples of the same phase.” Trans. Conn. Acad.,  
3,116, 152 (1856); Sci. Papers, 1,63, 96. 
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drawn through the experimental points. Functions possessed 
of these qualities have received no group name from the mathe- 
maticians. Some at  least of the qualities themselves have not 
always been taken for granted; Mendelejeff,12 for instance pre- 
ferred to graph the densities of sulphuric acid solutions by a 
series of lines joining a t  angles, and so later did Pickering and 
others; discussions13 in which the latter took part make it clear 
that the form now generally adopted is the result of choice, not of 
necessity. The definition of Gibbs’ “phases of variable composi- 
tion” (or “solutions” as van’t Hoff14 renamed them) involves 
assumptions (i) to (iii) ; these assumptions are thus a t  the root of 
many applications of the phase rule-for instance its use in the 
identification of basic salts.15 

(iv) In  the case of sulphuric acid solutions, the density is repre- 
sented as a one-valued function of the composition, although at 
15°C. between 97 and 100 percent acid the composition is a two- 
valued function of the density; in all such tables indeed the 
physico-chemical property, no matter what, is represented as a 
one-valued function of the composition. Unanimity in this 
matter is the result of tacit agreement as to the meaning of the 
word “composition;” no chemist will admit that  two solutions 
which at the same temperature and pressure have different 
densities, can have the same “composition”. From MaumenB’s 
observations,‘@ it seems possible that recently boiled solutions of 
sulphuric acid in water may differ in density as in other properties 
from those that have been kept, although their titre does not 
change on keeping; such solutions are excluded from the density 
table, if they were to be included a double entry table a t  least 
would be necessary, and the solutions would be spoken of as 
“containing” more than two components~~-trioxide, acid, and 
water, for instance, or several hydrates perhaps, as in the case 
of solutions of phosphorus pentoxide. 

12Zeit. phys .  Chem., 1, 273 (1887). 
18 British Association Reports, Leeds, 1890; Zeit. phys. Chem., 7, 378 (1891). 
l 4  Zei t .  phys. Chem., 6 ,  322 (1890). 
I s  Jour. Phys .  Chem., 7,259 (1903). 
16 Ber. d .  d .  chem. Ges., 8, 1361 (1875). 
1’Wald:  Jour. Phys. Chem., 1, 21 (1896); Trevor: ibid., foot-note p. 22; Ban- 

croft: The Phase Rule,  I thaca ,  1897, Ch. 18. 
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(v) Instead of defining sulphuric acid solutions in terms of 
weight and percentage of acid, Gibbs would state the weights of 
acid18 (z) and of water (y) they contained; much of the symmetry 
of his equations is due to this choice of variables, which carries 
with it important mathematical consequences. “Properties” of 
the solutions, like density independent of the weight, remain 
unchanged when both x and y are doubled or trebled, because such 

I 
I 

0 x 4  I 
A ,  

FIG. 1 

a change leaves the “composition” unaltered; they are therefore 
“homogeneous in x and y and of degree zero”-while quantities 
like V (the number of cubic centimeters occupied by t h e  solution) 
which under like circumstances would be doubled or trebled, are 
“homogeneous in x and y and of the first degree.” Thus, be- 
cause of the method of representation chosen by him, all the 
physico-chemical properties and quantities dealt with by Gibbs 
are homogeneous functions of two a t  least of the variables. 

Gibbs used ml, m2, instead of z, y, 
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What may be termed the “standard diagram,” where x + y = 1, 
and the abscissas give values of 2 ranging from 0 to 1, combines 
the advantages of both methods of representation. In  figure 1, 
the curve gives values of V and also of the specific volume19 
V = V / ( x  + y) for sulphuric acid solutions at  15°C. and atmos- 
pheric pressure; if instead of values of V there be plotted values of 
Gibbs’ function {, figure 1 becomes the thermodynamic diagram 
of Roozeboom and van Ryn van Alkemade,20 the introduction 
of which constitutes perhaps the most important contribution 
to the study of chemical equilibria since the publication of the 
papers of Gibbs. 

Heterogeneous systems. The volume of one gram (or the “specific 
volume”) of a system composed of x grams of acid and y grams of 
water kept separate is given by the ordinate X E  drawn from the 
point x on AB to meet the straight line CED. Similarly the 
specific volumes of heterogeneous systems consisting of 20 and 50 
per cent solutions in any proportions can be found by drawing a 
straight line to join the points on the curve CFD which have the 
abscissas 0.2 and 0.5 respectively. But though the specific 
volumes of such heterogeneous systems may readily be found by 
straight line construction from the graph of the specific volumes 
of the solutions, their densities or normalities could not similarly 
be obtained from graphs of the densities or normalities of the 
solutions on the standard diagram; it is therefore apparent that 
although a graph of the density gives exactly the same information 
as a graph of the specific volume, nevertheless for certain calcula- 
tions the latter is the more convenient function. To emphasize 
the distinction, an “orthomeric” function may be defined to be 
one whose graph f o r  a heterogeneous system on the standard dia- 
gram is a straight line. 

- 

19  The bar over a capital letter is used to  indicate that  the quantity represented 
by the unbarred letter is to  be divided by the mass; thus barred capitals refer to  
unit mass (1 gram). Helm [Grundzage d.  math. Chem., Leipzig, 1894, Engelmann; 
p. 411 used capitals and lomver-case italics. Lewis and Randall use the bar and 
a subscript numeral to  indicate the partial derivative with respect to  the mass 
of one of the components, their unit of mass being the mol.; they use small capi- 
tals t o  indicate volume, etc., per mol, thus their v means M v  where M is the mole- 
cular-weight in grams. 

2O L O C .  cit. 
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2. Funct ions defined wi th  reference to a reaction. Potential 
funct ions 

By the term “heat of a reaction” is meant the number of calories 
gained by the calorimeter when specified weights of the reagents 
all at  the same temperature are brought together in a calorimeter, 
allowed to react, and the product of the reaction brought to the  
initial temperature of the reagents. Used in this connection, t he  
word “reaction” has a special sense, as it implies equality of 
temperature between the initial and final states of the system. 
In  what follows, temperature pressure and the masses of the 
components will be employed as “independent variables :”2& 

it is therefore convenient that  the word “reaction” without quali- 
fication should imply equality of pressure as well, so that it may 
be possible to speak of values of t ,  p ,  2, and yfor  a reaction.22 

The number of calories gained by the (constant pressure) calo- 
rimeter during such a “reaction” may be represented by the sym- 
bol &; the properties of the function so defined must be established 
experimentally. It is found in the laboratory that Q for a given 
reaction is a one-valued function of t ,  p ,  2 and y for the reaction, 
that  it is independent of the temperature of the calorimeter (as 
distinct from that of the reaction), and that if both 2 and y be 
doubled (or trebled) while t and p remain unchanged, Q is also 
doubled (or trebled). Hence & is homogeneous and of the first 
degree in 2 and y, and a = Q / ( x  + y), gives the “heat of the reac- 
tion” for one gram. 

The quantity Q moreover “admits of a potential” (x); this 
means that the value of Q depends solely on the initial state ( A )  
and the final state (B)  of the system (both being a t  the same 
temperature and pressure), no matter through what intermediate 
states it may have passed during its change from A to B. This 

Gibbs prefers entropy, volume, and the masses of the components, for reasons 
given in a footnote t o  Trans .  Conn. Acad.,  2,382; Sci. Papers ,  1 , 3 4 ;  for the begin- 
ner, however, entropy as independent variable is impossible. 

22 The masses of the  components in grams are given by 2, g, z, etc.;  t gives the  
temperature on the thermodynamic scale; if the gram calorie be adopted as uni t  
of heat, and the cubic centimeter as unit of volume, p gives the  pressure in milli- 
meters of mercury multiplied by 1.3596/42650; thus for one atmosphere p = 
0.02423. 
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theorem is assumed every time the heat of a reaction is calculated 
by subtracting the heat of formation of the reagents from that 
of the products. The definition of the potential function is 
xa - xB = Q, where the value of xa depends only on the tem- 
perature pressure weight and nature of the reagents and that of 
xB on the products; thus x unlike Q is not defined with respect 
to a reaction, and from its definition it is apparent that x must 
be homogeneous in z and y and of the first degree; it is also, 
obviously, orthomeric. 

The tabulated heats of formation (for one gram in each case) 
with signs changed, might be chosen as values of 2 = x / ( z  + y). 
This choice would be equivalent to setting x = 0 for every chemi- 
cal element at the temperature and pressure (usually 18°C. and 
one atmosphere) for which the heats of formation were given; 
and if the values of x so chosen were used to calculate the heat of 
any reaction in which one element was converted into another 
at this temperature and pressure, the result would be Q = 0 in 
every case. Until such reactions are studied and the amounts 
of heat evolved determined, this is of no practical importance; 
and if it should be found necessary to allot an individual value of 2 
to each element, it would be easy to compute a new set of values of 
2 for the compounds; except for reactions between the elements, 
the values of Q obtained from one set would be the same of those 
from the other. (Another example of a potential function in 
general use is supplied by the tables of “individual electromotive 
forces;” in this case there exist at  present two rival conventions 
as to the zero.) 

The fact that in allotting numerical values to x convention as 
well as experiment plays a part, seems to awake an uneasy feeling 
in the minds of some; the number of possible reactions however 
so greatly exceeds the number of substances that tables of Q 
are out of the question. Others again feel that x is too “ab- 
struse”; but for the purpose of calculating the results of physico- 
chemical experiments it is not necessary that there should be an 
“explanation” of the experimentally established fact that Q 
admits of a potential, it is sufficient that the fact itself be put in 
convenient mathematical form. By adopting this procedure, 
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not only can the argument be made clearer and more precise, 
but there is less danger that a sound conclusion might fall under 
suspicion should the day arrive for the irrelevant “explanation” 
to be abandoned. 

for the reaction between sulphuric acid and water 
x grams acid +- y grams water + (x + y) grams solution 

are plotted (for 15°C and 1 atm.) in figure 2; a t  z = 0 and a t  x = 1 

Values of 

FIQ. 2 

Q must obviously be zero, while j;: will depend on temperature 
pressure and the choice of a zero. and iil for the values 
of ;ii a t  x = 0 and x = 1 respectively, the values of j;: for any 
heterogeneous system formed of x grams acid and y grams water 
will be given byx.21 + y ~ % ~ ,  and Q = x.iil + y . x o -  x. Thus 
the curve drawn for Q could be used for x, but while values of Q 
are found by measuring the distance from AB to the curve, 
values of x must be found by measuring from the curve to a 
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straight line whose ordinates at  x = 0 and x = 1 are go and 2, 
respec t i ve l~ .~3  

The “heat of dilution,” or the number of calories gained by the 
calorimeter when one gram of water is added to a large quantity 
of solution is given by b&/dy, (which may be writte1-12~ q y ) ;  this 
differs by a constant from -dx/by (or - x,) ; while bq,/b, (or qxy)  
which measures the effect of concentration on the heat of dilu- 
tion, is equal to - xxy, the conventional constants disappearing 
in the second differentiation. 

-- 
The physico-chemical properties of solutions, then, are repre- 

sented by continuous one-valued functions of t (the temperature), 
p (the pressure), x and y (the weights of the components) ; they 
admit of but one derivative at  each point, are homogeneous in x 
and g, and for choice are orthomeric. The mathematical proper- 
ties of such functions, in particular the relations between their 
derivatives, are thus of special interest to chemists; while the 
“standard diagram’’ bears the same relation to the calculations 
of physical chemistry that the standard trigonometrical dia- 
gram-circle of unit radius, with lines named s in ,  cos, tan,  etc., 
bears to those of the surveyor. 

Relations bet ween the derivatives of the physico-chemical func t ions  

The notation for partial derivatives introduced by Gibbs is pre- 
cise; he prints in small type t o  the right of the symbol the quan- 

tities held constant, during the differentiation. Thus E t p y  is the 
bX 

28 By convention, a quantity measured upwards on the diagram is positive, one 
measured downwards is negative. If the(negative) heats of formation be adopted 
as values of 2, then jzo = -3820 and = - 1973; this part of figure 2 is not drawn 
t o  scale. 

2 4  Since t, p ,  x, y, have been adopted as independent variables, dQ/dy stands for 
clQ/dy ( t ,  p ,  x, const.). The symbol bQ/dy may be abbreviated t o  qyl  similarly 
dV/dx to  v x ,  bV/dt to  ut ,  etc. ; following this system, the symbol cp is here used as 
a n  abbreviation for W / d p  (rate of change of heat capacity with pressure) and 
not with the customary meaning (specific heat a t  constant pressure, our 7). 
Gibbs writes pi, for d(/dml ( t ,  p ,  m2 const.); in the present paper p x  is written for 
dr/bx ( t ,  p ,  y, const.), andsimilarlyptfor d(/dt ( p ,  x, y, const.),etc. The symbol 
d v / b x  may conveniently be abbreviated t o  i,, but the use of this abbreviation 
should not mislead the beginner into thinking that  V ,  = u x / ( x +  y). 
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derivative commonly written bV/bx and in this paper u,; another 
derivative to which because if its importance the special symbol 

DV/Dz  may be assigned, is ?.? t ,  P, (z+ Y), it gives the slope of the 
d X  

V curve on the standard diagram. By means of the three 
equations dt = 0, d p  = 0, d (z + y )  = 0 implied by the small letters 
in Gibbs’ symbol, dt,  d p  and d y  may be eliminated from the general 
expression for d V ,  vis : 

d V  = v,.dt + v p * d p  + v x * d x  + v,.dy 

D I D X  = -D/DY = a / a X  - a / a y  

( 1 p  

giving DV/Dz  = - D V / D y  = ux - v,, and in general 

Euler’s theorem. The fact that all physico-chemical functions 
are homogeneous in two of the variables (X and y )  and not in 
the other two ( t  and p ) ,  leads to characteristic and important 
relations between their derivatives. Writing zx for bZ/dx and z, 
for b Z / b y ,  Euler’s theorem asserts that if 2 be a function homo- 
geneous in z and y and of degree n, then 

n.2 = 2 - z ,  + y .2 ,  

Since V is of the first degree this gives V = z.ux + y - u r ,  and as 
Visof degree zero, 0 = z.Zx + y.Vy; whenz= O,uy = V/y =V,and  
v y  = 0. 

To arrive at  these relations without appeal to Euler, a special 
case may be considered: If to a solution formed of acid and water, 
more acid and water be added in the proportion in which they are 
already contained in the solution, the composition of the solution 
will remain the same as before; and if temperature and pressure 
after the addition be made the same as before, there will be no 
change in the specific volume of the solution or in any other 
property that depends only on temperature pressure and composi- 

(2 1 

- 

26 This equation implies only tha t  V is a function of t, p ,  z, and y, and tha t  
i t  admits of a derivative; thus V and its derivatives may be replaced by 7 and its 
derivatives. As V ,  ut, up ,  v z  and v y  are one-valued functions of the independent 
variables, their values are fixed when definite values are chosen for 1, p ,  z, and y; 
but  the three ratios between the four quantities dt, d p ,  dz, and dy may etill be 
given any values desired. 
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tion; the volume of the solution on the other hand, and all other 
functions of the first degree, will be increased in the same propor- 
tion as that in which the amount of acid (and of water) in the 
solution was increased. In the language of the calculus, if dt  = 0, 
d p  = 0 and d x : d y  = x:y, then df;7 = 0 and dV/V = d x / x ;  
substituting these values of dt, d p ,  dy, and d V  (or d v )  in Eq. (l), 
the equations sought result. 

Equating the two expressions for d V  given by Eq. (1) and 
Eq. (2), there follows the important 

(3) 0 = - v t * d t  - v p * d p  + x . d v X  + y . d v ,  

Gibbs’ function r is of the first degree; substituting { for 2 in (2) 
gives Gibbs’ equation27 96, while (3) gives Gibbs’ 97. 

9 [Ill 20 

c41 L-13 ~31 

5 123 I7 

FIQ. 3 

In  order to  apply Euler’s theorem to vt, 21, etc., the degrees of 
these functions must be found: Since vt is a special case of the 
fraction (V,  - V,) / ( t ,  - t l ) ,  the difference between t,he volumes 
of two solutions divided by the difference between their tempera- 
tures, the degree of vt will be the same as that of the fraction, viz; 
1; while the degree of vx is the same as that of (V ,  - V , ) / ( X Z  - XI) 
via.: 0. Hence from (2):  u t  = x.bv,/bx + y . d v t / b y ,  and 0 = 
x.bv,/bx + y .bv , /by .  

V a l u e s  of second derivatives independent of order of d i ferent ia-  
t ion: According to this theorem, dv,/dt = bvt/bx so that the 

26 As is obvious from its derivation, this equation implies not only that  V is a 
function of t ,  p ,  x, and y, but also that  i t  is homogeneous of the  first degree in x 
and y ;  thus V may not be replaced by 7 in Eq. (4). 

2 7  The numbers are thoss of the equations in the paper “On the equilibrium of 
heterogeneous substances.” 

Similarly in other cases. 
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compact symbol ut, may be used in place of either of them. The 
theorem is a special case of a general relation existing between the 
differences of any four numbers; in figure 3 the four numbers are 
written at the corners of a rectangle, and their differences (left 
from right, bottom from top) are given in brackets between them; 
the differences between these differences (taken in the same order) 
must be identical, no matter what the numbers may be. This 
understood, the proof of the theorem resolves itself into a reading 
lesson in the symbols of the calculus (fig. 4); and it is obvious 
that unless 2 be a one-valued function of the variables the 

t + d t  

t 

X [dx] r + d x  

FIG. 4* 

theorem will not apply. Clausius found it necessary to emphasize 
this point when dealing with the quantity W in the introduction 
to his celebrated treatise.28 

The “mathematical group” of second derivatives: There are in all 

sixteen second derivatives of V of the type LP~Y,  5:wl etc., 

in whch all four independent variables appear either in the 
denominator or as small letters to the right; these are the deriva- 
tives for which in works on mathematics the symbols b2V/bt2, 
b2V/dt.dp etc. are employed, and in this paper the symbols v t t l  

av 
at ap 

2 8  R. Clausius, Mechanische Warmetheorie, 3 ed., Braunschweig, 1887, Vieweg.- 

* In  making this cut, the symbol 6 was inadvertently used instead of d. 
Mathematische Einleitung. 
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&,P 

VtP! 

(up - X ’ V P X ) / Y t  

VPP 
VPX 

vtp, etc.; for want of a better name they may be called the “mathe- 
matical group.” By means of the two theorems stated above, 
ten of them can be expressed in terms of the other six. I n  Table 
I, vtt ,  utp, ut,, upp, vpx, ox, are chosen as the six; * indicates that 
the reduction was effected by means of Euler’s theorem for 

TABLE I 

Mathematical group 

a% any . 

vtxl (ut - X*VtX)/Y! 
U P X §  (01, - Z’VPX)/Y! 

vxx - X.V,x/Y ! 
- x.vxx/y* x2*vxx/y~* 

DEIOYINATORB 

at 
a P  
ax 
aY 

5 .  (up) 

1. (ut) 
R 21 

7 9 (ut) 

R 19 

R 2 3  

NUMERATOR8 

6 .  (ut) 
R 20 

12. ( t )  
R 22 

1s. ( u p )  
R 2 4  

NUNERATORE 

avP I at 

4. (P) 

10. (UP) 

R 14 

R 16 

- 

14. ( u p )  
- t/s - ! -  

r = vtt s = utp t = vpp 

functions of degree zero, t by Euler’s theorem for functions of 
the first degree, 0 by the ‘(order of differentiation” theorem. 

The “physical group” of second derivatives: There are twenty- 
four second derivatives of V for which both 2 and y are constant 

and in whose symbols neither vx nor v, appear; such are - p l y .  

These may be called the “physical group,” as they 
b V P  

aut 
at 

PW etc. av, - 
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arise in the discussion of experiments where the compositions of 
the substances involved were not changed. Twelve of them are 
reciprocals (R)  of the other twelve, and all can be expressed in 
terms of three, viz., u t t ,  ut,, up,. To save space in Table 11, the 
customary abbreviations r = u t t ,  s = ut,, t = up, have been 
used, while the third quantity held constant during differentia- 
tion is printed in brackets. 

If V be replaced by ( (and consequently u t  by -7, up by V ,  
u t ,  by - C/t,  ut, by ut, and Y,, by up, see page 317), Table I1 

TABLE I11 

Chemical group 

DHINOMI- 
NATORS 

NUMERATORS 

- i -  
O I S  

21. (v,) 1 22. (2) 
0 - xs/y 

~ * ( v Y )  4 . ( ~ )  5 * ( u y )  6*(ux) 

9 .  (u,) 10. ( v y )  11. (v,) 12. (2) 

R 13 R 14 R 19 R 2 0  

R 1 5  R 1 6  R21 R 2 2  

17- (u,) 18. ( ~ y )  - - 
R 2 3  R 2 4  

- 23. (0,) 24. ( v y )  

- X / Y  - X/Y 

includes Clerk Maxwell’s relations between the eight thermo- 
elastic c~efficients;~g and as moreover the two specific heats (at 
constant pressure and at  constant volume) can also be expressed 
in terms of the second derivatives of (see page 317), all the 
mathematical relations existing between the thermal coefficients 
are comprised in Table 11, only three of them are independent. 
As an illustration of these relations: the assumptions that 
liquids and solids are incompressible (up  = 0), and that their 
thermal expansions are negligible (u t  = 0), carry as consequences 

z D  See E. Ariks, Chimie physique Climentaire, Paris, 1914, Hermann. Ch. 1. 
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that their specific heats (at constant pressure) must be independ- 
ent of the pressure, and that their Joule-Thomson heats must 
be zero; the wholly different assumptions as to  the compres- 
sibilities and thermal expansions of gases made by the equation 
pV = mat carry these very same consequences. 

T h e  ‘(chemical group” of second derivatives. If in the symbols of 
the twenty-four members of the “physical group” the letter x 
be substituted for t and y for p ,  wherever these letters occur, there 
will result a list of the twenty-four members of the “chemical 
group;” and by similar transliteration the relations obtained in 
Table I1 can be made available. But while vt t ,  v tp ,  and up, are 
independent, v,,, vxy, and v,, are not; they are related by the two 
equations 0 = x . v x x  + y . v x y  and 0 = x.vXy + y.v,, (Euler’s 
theorem). Of the three, vxy ,  the most symmetrical, has been 
retained; and Table XI gives expressions for the other twenty- 
three in terms of v x y .  

Other derivatives. Numerous other groups of the second 
derivatives of V might be constructed, but these three are the 
most important. The derivatives of v might be classified simi- 
larly; but all of them can be expressed in terms of the derivatives 
of V by means of the equation of definition V = (x + y )  a v. 

In figure 5, BH gives V = v for x = 0.8, 
and GF is the tangent to the V = v curve LHK at  x = 0.8; 
for the eighty per cent solution at  the temperature and pressure of 
the diagram, therefore, DV/Dx  is negative, and its numerical 
value is given by the length N F  measured on the scale of ordi- 
nates. By means of two relations already obtained, viz., V = 
z-o, + y . v y ,  and DV/Dz = v x  - v,, it may be shown that v x  
is given by CF and v, by AG both positive; while similarly 
5, (negative) and 5, (positive) are given by HE and H M  re- 
spectively. 

If instead of V ,  Gibbs’ function ( had been plotted, the lengths 
C F  and A G  would give bl/bx and a l l b y  respectively (or px and py 

in Gibbs’ notation). Much of the usefulness of van Rijn’s 
thermodynamic diagram depends on the advantage he has taken 
of this construction. 

T h e  standard diagram. 
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Since the graph of V = v in this figure is a “festoon,” Le., is 
such that any straight line joining two points on the curve lies 
wholly above the curve, it is obvious that v, increases with Z, 
Le., that Dv,/Dx is positive for all points on the curve; and as 
Dv,/Dx = - (x + y)vxy/x, the quantity v,, must be negative 
for all points. It will be shown later that the curve for solutions 

FIG. 5 

miscible in all proportions must be a festoon, hence for all such 
solutions pxy  must be negative; this in turn leads to “Le Chate- 
lier’s law.” 

Resul t  of integration independent of the path.  This theorem is 
analogous to that on the order of differentiation; it is just as 
useful, and is subject to the same limitation. Let 2 be a one- 
valued function of two variables, p and x for instance, and let Z1 
be the value assumed by Z when p = pl and x = xl, while 2 2 ,  Z3, Z4 
have the values indicated in figure 6; it is obvious that Z 3  - 
2, = (2, - 2,) + (2, - 2,) = (2, - 2,) + (2, - Z,), the dif- 
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ferences are given in brackets in the figure, and the demonstration 
of the theorem is reduced to a reading lesson in the symbols of the 
calculus. When functions of four variables are involved, it is 
not necessary that the other two should be held constant during 
the integration; they might vary with the first two according to 
any law, for instance, z + y  might be constant for the diagram. 
What is essential is, that  2 should be a one-valued function of the 
variables, like V ,  or any of the potential functions; quantities 
like Q or W, whose values are not uniquely determined by the 
initial and final states of the system, are excluded. 

THE FUNCTIONS O F  THERMODYNAMICS 

The calculations of chemical thermodynamics deal with (1) 
chemical changes in a system, (2) the quantity Q, viz., the number 
of calories 30 gained31 by a heat reservoir, e.g., a calorimeter, when 
these changes occur, and (3) the number of gram-centimetres 
gained by a weight or weights while the system changes and the 

The conceptions “quantity of heat” and “temperature” are admirably dis- 
cussed by E. Mach in his Principien der Wdrmelehre, Leipzig, 1900, Barth. 

81 The “chemical convention” is here adhered to;  according to  the “thermody- 
namic convention” the symbol should be defined t o  give the number of calories 
lost by the reservoir. 

*In making this cut, the symbol 6 was inadvertently used instead of b. 
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reservoir gains the Q calories. To simplify the formulas, the 
quantity W is defined to be the quotient of the number of gram- 
centimetres divided by the factor 42650, and the unit of pressure 
is so chosen that for a pressure of one millimetre of mercury, 
p = 1.3596/42650. The experimental work is supposed to be 
carried out under such conditions that, except the reservoir and 
the weights, no bodies not included in the “system” are affected 
by changes occurring in i t ;  t o  simplify the definitions, only one 
heat reservoir is assumed; if in practice more should be involved, 
all but one must be restored to their original condition before the 
operation is considered to  be complete. Temperatures are those 
of the thermodynamic s~a le ,3~  invented33 to simplify the formulas. 

All that  is known of these two quantities Q and W has been 
ascertained by experiment; what is needed for the present purpose 
is stated in the following two laws: 

I. In  the first place, neither Q nor W, depends solely on the 
initial and final states of the system, Le., neither of them admits 
of a potential; the sum of the two, however, does; and Gibbs’ 
symbol for this potential function,a4 viz. : e, may be defined by the 
equation 

where eA is the value of e for the system in the (initial) state A ,  
and eB in the (final) state B. This definition imposes no restriction 
as to the temperature of the heat reservoir, and is valid whether 
A and B be uniform in temperature pressure and composition 
throughout or the reverse, whether the change be reversible or 
non-reversible, and whether it be a “reaction” in the narrow 
sense defined above, a change of temperatures or of pressures or a 
combination of all three. Since experience shows that both Q 
and W are doubled or trebled when the masses of all the compo- 
nents are doubled or trebled while in every other respect the 
change A-tB remains the same as before, it follows that E must 
be homogeneous and of the first degree in the variables defining 
the masses of the components. 

E A - E B = Q  + w  (1) 

*a Called also “absolute scale” or “Kelvin scale,” deg.  K.  
Ia W. Thomson: Trans. Roy. SOC. Edin., 21, 123 (1854). 
34 Introduced by Clausius, who used the symbol U .  Pogg. Ann., 79, 384 (1850). 
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11. In the second place, if the change in the chemical system and 
also all operations necessary to ensure that only one reservoir is 
affected, be “reversible” in the technical sense in which that word 
is used in thermodynamical reasoning,35 then for any given 
change A j B ,  and a heat reservoir of temperature t,, the number 
of calories gained by the reservoir is a minimum (and conse- 
quently, by I, the number of gram-centimeters gained by the 
weights a maximum) ; and the quotient of this minimum number 
of calories divided by the temperature of the reservoir admits of 
a potential36 r : 

(11) 
minimum number of calories 

temperature of reservoir VIA - TB = 

Like e, and for a similar reason, 4 must be homogeneous and of the 
first degree in x and y. 

These two functions e and r are sufficient; but, as in trigo- 
nometry, a large number of convenient though unnecessary 
functions37 have been introduced : 

Q, x: In  the special case that the change A -tB consists of a 
“reaction” carried out by bringing the reagents together in : 

1. 

a6 Illustrated by Clausius Mechanische Warmetheorie, 3 ed., Braunschweig, 

86 Due to Clausius, who used the symbol S. Pogg .  Ann., 93,500 (1854). 
87 Massieu’s “characteristic functions” $ = ( tv  - ~ ) / t  and$’ = (tq - E - p V ) / t ,  

[C. r., 69, 858, 1087 (1869)l antedate Gibbs’ work and are quoted by him; they 
correspond to  Gibbs’ -$/t and -r/t respectively. Planck gave Massieu’s $’ 
the symbol @ [Wied. Ann., 32, 462 (1887)], van Laar gave i t  the symbol * and 
called it “Planck’s potential. ” 

G. N. Lewis’ “fugacity” may be defined by the equation pcx = at.logf,,’a+ 81 + t(E1 - &I - Cialog t )  wheref, (writtenfl by Lewis) is the fugacity - - -  of the com- 
ponent whose mass in the phase is denoted by x and the symbols E1 HI C1 and a 
have the meanings assigned them in the paragraph on perfect gaseous solutions 
(page 334 below), regardless of the state of aggregation or the degree of “perfec- 
tion” of the phase to  n-hichp, refers; thus for a perfect gas, .f = p .  

Lewis’ “(absolute) activity” E is defined by ti = j l /R t ,  where R is the gas con- 
s tant  [Proc. Am. Acad., 43, 259 (1907)l. His “(relative) activity a,’J or “activity” 
tout court, is the quotient off,  by the value of the fugacity of the same component 
in an  arbitrarily selected [‘standard state;’’ i.e., in a phase which is to  be chosen 
from case to  case with the object of simplifying the equations, and which may 
differ in concentration (or even in composition) and in pressure, but not in tem- 
perature, from that  t o  Thich fl refers. Thus, in the standard state itself, ai = 1. 

Vieweg (1887) Vol. I, Abschnitt 111. 

- 
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constant pressure calorimeter (as distinguished from a calori- 
metric bomb) W = p(V ,  - V,), and Q is written for Q. From I 
it follows that E, - eB = Q + p(V ,  - V,), and from this, that  Q 
admits of a potential (x), and that x = E + pV. 

9, t v ;  Kfi: In  the special case that thechange is reversible 
and a “reaction,” and that the temperature t, of the reservoir is 
the same as that of the reaction, viz: t ,  Q may be replaced by 9 
and W by % From I I , 9  = t(vA - v,); and from this and I, 
W =  e, - eB - t(vA - qB), whence the conclusion that % 
admits of a potential (fi), and that $ = e - tv (G 87). 

{: The quantity 3 = W- p(VB - V,), if multiplied 
by 42650, gives the amount by which the number of gram 
centimeters gained by the weights when the reaction is carried 
out reversibly exceeds the number gained when the reaction is 
carried out in a constant-pressure calorimeter, viz : p (V, - V,). 
It likewise gives the number of gram-centimeters calculable from 
electrochemical equivalents and the voltage of a reversible cell, 
without regard to any change of volume caused by the electro- 
chemical process. From its definition it follows that 9” admits 
of a potential ({) and that { = E - tr] + pY (G 91). 

Narne~3~  have been given to some of these functions: E for 
instance is “the energy of the system,” 7 “the entropy of the 
system,” W “the free energy of the reaction” and fi “the free 

**Equation 89 of Gibbs’ paper “On the equilibrium of heterogeneous sub- 
etances.” T r a n s .  Conn.  Acad. ,  3,108 (1876); Sei .  Papers ,  1,55. 

W. Thomson called e “the mechanical energy of a body in a given state” 
[Trans .  R o y  SOC. E d i n ,  30, 475 (1851)l. Kirchoff used the  term “Wirkungsfunc- 
tion” for - c [Pogg. Ann., 103,177 (1858)1, and Zeuner “innere Warme” [GrundztZge 
d.  inech Warmetheorie (1860)l. clausius [ b e .  cit.1 gave the name “entropy” t o  q .  
Gibbs called $ “the force function of the system for constant temperature,” and, 
earlier, the “available energy”; for other senses in which the words entropy and 
available energy have been used, see a note by Gibbs [Trans .  Conn.  Acad. ,  2, 
401 (1873)l. Helmholtz gave$ the name “freeenergy” [Math. u. nut .  Mi t t .  d .  Berlin. 
A k a d . ,  1, 7 (1882)1, and Duhem called i t  ‘‘inner thermodynamic potential” 
[Le Potentiel thermodynamique, Paris, 18861 The name “thermodynamic potential 
a t  constant pressure” for r is due t o  Duhem [Trai t6  616m. de mich.  chimique, 
Paris, 1897, Hermannl. The name “potential” was given by Gibbs to  p x ;  Helm 
suggested “chemical intensity” [Lehre v .  d.  Energie, Leipzig, 1887; Felix; Die 
Energetik, Leipzig, 1898; Veitl. The product of pxinto the molecular-weight of the 
component is called by G. N. Lewis “the partial molal free energy” of the com- 
ponent. 

(G S9).38 
2. 

3. 
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energy of the system,’’ 2 “the bound energy of the reaction,” 
“the thermodynamic potential a t  constant pressure,” and 

br/bx (or px) the “potential” of the component whose mass in the 
phase is given by 2. These names however are often used rather 
loosely,40 and moreover are apt to suggest to the beginner some- 
thing other than the exact meaning ofethe functions whose 
names they were intended to be;41 all misunderstanding is avoided 
if such names as epsilon, eta, zeta, etc., are employed.42 

Derivatives of the thermodynamic funct ions 

W i t h  respect to t. If a substance of uniform temperature pres- 
sure and composition be contained in a cylinder closed at the top 
by a frictionless piston the weight of which fixes the pressure on 
the substance, and if without changing p ,  z, or y the temperature 
of the substance be brought from t to t +dt by immersing the 

4 o  I n  Lewis and Randall’s Thermodynamics and the f ree  energy of chemical sub- 
stances [New York, 1923, McGraw-Hill Book Co.1, which appeared after the 
above was written, the  symbol F and the name “free energy” are used for Gibbs’ 
function r instead of for $. 

‘1 The “free energy” of a reaction, for instance, may be greater than the “total 
energy” of the same reaction-a relation tha t  would never be suggested by the 
nomenclature. 

IZ I n  place of e, 7, $, x ,  I, respectively, Massieu in 1869 [loc. cit.1 used U, S ,  -t$, 
U‘,-t$, and in 1877 [Jour. de phys., (i) 6,161 U, S, - H ,  U’, - H’. Helm [Die 
Energetikl used E ,  F ,  S, G, H .  Van Laar [Lehrb. d .  math. Chem., Leipsig, 1901, 
Barthl used E ,  S, +, X ,  2. Duhem [Thermodynamique et Chimie, Paris, 1902, Her- 
mann] used U, S,  ? U + PV, +. Aries [Chimie physique bldment. Paris, 1914, 
Hermann] used U, S, I ,  J, K. Planck in his Vorl. u. Thermodynamik [Leipzig, 1897, 
Veit] used U, S, F ,  U + pV,  a; in the English version [Treatise on Thermodynamics, 
translated by Ogg, London, 1903, Longmans, Green & Co.1 U, @, F ,  U+ pV,.-W; 
i n the  first andsecondof his four papers u. d .  Vermehrung d .  Entropie [Wied. Ann., 
30, 562; 31,189 (1887)l he used -W for r, in the third and fourth [Wied. Ann., 32, 
462 (1887) ; 44,385 (1891)l he used -t+. 

There is no generally accepted mark (such as the bar in the present paper) 
to  distinguish homogeneous functions of the first degree from those which refer 
t o  unit mass. I n  many papers, unless the equations happen to  prove familiar, 
one must pore over the text to  ascertain whether the symbols refer to  the whole 
mass, to  one gram, or to  one mol; some writers give two of the meanings t o  the 
same symbol in the course of a single article, and even where i t  is clear that  the 
quantities refer t o  “one mol”, there is often no definition of the “molecular- 
weight”to be used-no definition, that  is, in terms of quantities measurable in the 
laboratory-though without such information, the formulas themselves, no matter 
how laboriously deduced, are pretty useless. 

Lewis and Randall use E, S ,  A ,  H ,  F.  
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cylinder in a bath of temperature t +dt, the only weight to move 
will be that of the piston and W = p . v t . d t ,  while Q would be 
recorded as -Ced i ,  C being named the “heat capacity at con- 
stant pressure” of the substance. (The heat capacity of the 
cylinder itself is supposed negligible.) Substituting these values 
for Q and W in Eq. I, and writing - be/b t .d t  for E (at t )  - 
E (at t + d t ) ,  there follows be/bt = C - p . v t .  

If on cooling again to  t ,  the substance regains all its former 
properties, (and it is only in such a case that the heat absorbed 
would be recorded as the “heat capacity”), the operation de- 
scribed above is thermodynamically reversible, and it follows from 
I1 that - bq/bt.dt = Q / t ,  whence bq/bt = C/t .  

The derivatives of the other functions can be found from their 
definitions, they are: b$/bt = - q - p - v , ;  bx/bt = C; bc/bt = 

Again, if the pressure on the cylinder be 
increased from p to p + d p ,  while t ,  x, and y remain unchanged, 
W = p.v , .dp and Q = - t . b q / b p . d p ,  so that  b e l b p  = t . b q / b p  - 
p-v , .  But from the definition of 5, b e l a p  = t . b q / b p  - pev ,  - 
V + b r / b p ;  therefore b r / b p  = V ,  b q / b p  = -v t ,  b e / b p  = - t - v t  
- p - v , ;  and from their definitions, b+/bp = - p . v p ,  b x l b p  = 

Since from 
its definition = e - tq + p‘v, r like E ,  q, and V must be homo- 
geneous and of the first degree in the variables 5, y etc. that  denote 
the masses of the components; it  follows at once from Euler’s 
theorem that e =  z . p x  + y - p y  + . . . (G 96) and that 0 = q - d t  - 
v - d p  + x .dpLx  + y 9 d p y  + . . . (G 97). Substituting the value of 
5 from (G 96) in (G 91), differentiating, and striking out the four 
terms whose sum is zero, (G 97), there follows an expression for 
de (G 12), and similarly for the others. The definitions of the 
thermodynamic functions, the relations between them following 
from (G 96), and the expressions for their derivatives obtainable 
by means of (G 97) are collected here for convenience of refer- 
ence; when there are more than two components, additional 
terms such as 2 . p .  or p.-dz must be added. 

- q ,  ap.,/bt = - qx. 
W i t h  respect to p .  

v - t . V , ,  apu , lap  = v,. 
Relations between the derivatives (Euler’s theorem). 
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Criteria of thermodynamic equilibrium 

The criteria of equilibrium are implicitly contained in the two 
laws of thermodynamics as stated above; Gibbs has put them 
into mathematical forms convenient for dealing with the results 
of measurements carried out under a number of different experi- 
mental conditions. For the present purpose i t  will be sufficient 
to establish the criterion of neutral equilibrium in a heterogeneous 
system with respect to changes which do not affect the tempera- 
ture or the pressures of the phases involved. 

At the present time, in papers on chemical thermodynamics, 
the word “equilibrium” used without qualification is generally 
intended to be synonymous with “neutral equilibrium.” A 
system in “stable equilibrium’’ may be compared to a balance 
having a 10 pound weight on one pan and 1 pound on the other; 
if the weights on both pans were the same, the balance would be 
in “neutral equilibrium.” Gibbs wished to include both cases, 
hence the inequality sign in many of his formulas. 

Criterion of neutral equilibrium. According to the two laws 
of thermodynamics, for a given change A +B in the system and a 
given temperature t ,  of the heat reservoir, W will have its maxi- 
mum value, vie., - eB - t ,  (qA - qB), if the change be carried 
out reversibly. If under specified experimental conditions W 
would be less than this maximum, it follows that under these 
conditions the change may occur but will not be reversible; 
if the conditions are such that W for the change if it should occur 
would be greater than this maximum, it follows that under these 
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conditions the change will not occur, i.e., that  the system will be 
in stable equilibrium with respect to the change in question; and 
finally, that  the change A +B will be reversible, i.e., that  the sys- 
tem will be in neutral equilibrium with respect to this change, if, 
and only if, under the specified experimental conditions, 

w = EA - EB - t r  (VA - 7]B)* 

Criterion of neutral equilibrium in a heterogeneous system at con- 
stant temperature and pressures.43 ( a )  If the system be made up 
of a number of phases each with its own temperature, pressure, 
weight and composition, then the volume of the system V = 

V’ + t”’ + . . . , accents being used to  indicate the phase to 
which the symbol refers; similarly e = e’ + E” . . . , q = q’ + 
q” + . . ., etc. ( b )  If the phases are all at  the same tempera- 
ture t ,  and (c)* if the change A -tB does not involve change in the 
temperature t or ( d )  in the pressures p’, p”, of the phases (which 
need not all be a t  the same pressure); and ( e )  if experimental 
conditions are such that the only weights to move are those that 
fix the pressures on the various phases, then W = p’ (V’B - V’,) 
+ p” (V”, - V”,) + . . . , and the criterion of neutral equi- 

librium with respect to the change in question becomes p’ (V’, - 
V’A) + p”(V”B - v ” A )  + . m . = €’A - e’B + €“A - e”B + 
- t (v’A - 7 ] ’ ~  ) - t(7”A - 7”g) - . . . , that  is, 0 = (’A - (’g 
+ {’’A - (“g + . . , or (6()tp = 0 (G 117). 

The experimental conditions specified above obtain in practi- 
cally all the cases of chemical equilibrium discussed in elementary 
text-books of physical chemistry. 

From the theorem just established it follows that the value of f 
for any heterogeneous system formed of two solutions which are 
miscible in all proportions (solutions of alcohol and water for 
instance) must be greater than the value of f for the homogeneous 
solution of the same temperature pressure and composition; in 

48 Neglecting the  influence of gravity, electricity, distortion of solids, and 
capillary tensions, and therefore neglecting any quantities of heat or work tha t  
may be involved in the separation of two phases tha t  are in contact. 

* To ensure this, the system may be immersed in  a thermostat of tempers- 
ture t ;  tr = t. 
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other words, that the r curve for such solutions on the standard 
diagram must be a festoon, like the V curve of figure 1. Hence for 
all such solutions the potential (p,, or p,) of each component must 
increase with the concentration of that component in the solution, 
and p x y  must be negative for all of them (page 311); while in the 
case of two liquids of limited miscibility, like ether and water, 
fix, will be negative for all the solutions that can be prepared. 

INSTANCES OF EQUILIBRIUM BETWEEN TWO PHASES IN  A 
TWO-COMPONENT SYSTEM 

I ,  T h e  pressures o n  the two phases are d i f e ren t  

If the cell containing the sugar solution in an osmotic apparatus 
be closed by a piston weighted so as to  maintain the pressure p“ 
on the solution, the “change A -+B” will consist in the passage of 
dy grams of water through the semi-permeable membrane into 
the solution while t p’ p” and x” remain constant; and the con- 
dition of neutral equilibrium, dr’ + dr” = 0 becomes py’dy - 
py”dy =0, or p,’ = py”,  that is (since b ~ , / b p  = vy) 

0 = PY” - P Y  ’ - - i!l- d p  + ~~~~,~ dx 

(values of v ,  for 5 = d’, y = 2”; values of p,, for p = p’, y = y”; 
see fig. 6). 

Writing P, = p” - p’ (at equilibrium) for “the osmotic 
pressure of the sugar”, the same relation may be put in the form 

v,.aP,/ax = -+,, (4) 
(values of v ,  and of p x y  for x = x”, y = y”, p = P ,  + P I ) .  

If a membrane could be found permeable for sugar (alcohol 
would be a better example) and impermeable for water, the 
“osmotic pressure of the water” could be measured, and as above, 
u,.dP,/by = -p,,(values of v, and pXy for x = z’l, y = y”, p = 

At first sight there does not seem much gained by merely ex- 
pressing a quantity (osmotic pressure) which it might be desired 

P Y  + P’). 
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to determine, in terms of the equally unknown and moreover 
unfamiliar functions p, and p x y .  It is not necessary, however, 
to know the values of p x y  in order o make use of the equation; 
the slopes of other equilibrium curves will be expressed in terms of 
the same function, and by eliminating it,  relations between os- 
motic pressures, freezing-points, boiling-points, etc., may be ob- 
tained which lead to the so-called “indirect methods of determin- 
ing the osmotic pressure.” Conversely, osmotic pressure determi- 
nations, if available, can be used to predict the outcome of other 
experiments involving the same solution. As an example of the 
method, pxy may be eliminated between the expressions obtained 
above for the slopes of the two osmotic pressure curves; neglecting 
the effect of pressure on u,, u, and p x y  (ppxy = vxy) there results: 
v,.bP,/ds = u,.bP,/by, so that if one were known a close approxi- 
mation to the other could be found by determining the densities 
of the solutions. In  the second place, expressions for p x y  in 
terms of temperature pressure and concentration have been 
established which though valid only when certain conditions are 
fulfilled, yet in these special cases enable the osmotic pressures to  
be computed; examples are given in the paragraphs headed 
“fundamental equations”. In  the third place, though p, and 
p x y  may be unfamiliar, yet dpy/dp = u, is not, and by means of 
this last relation it is easy to shew that “the effect of pressure 
on the osmotic pressure’’ may be calculated from the densities of 
the solutions. 

Eflect of pressure on the osmotic pressure. When equilibrium is 
attained in an osmotic apparatus, let the pressure on the solvent 
be increased by dp’ while temperature and the concentration of 
the solution remain as before; and let dp” be the consequent in- 
crease in the pressure of the solution when equilibrium is again 
attained. Because of these changes in the pressures, both 
py‘ and pyr’  will be changed; but at the new equilibrium the new 
values will be equal, as the old were. Hence p r p y .  dp’ = prrPy dp”, 
or dprr/dp‘ = c,’/vY”; but, by definition, d P ,  = dp“ - dp’, 
therefore dPJdp’  = (v’ - V”~) /V”, .  
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2. T h e  pressures o n  the two phases are the same 

Here the “change A -+B” consists in the passage of dx grams of 
one component and dy grams of the other from one phase to  the 
other, and the condition of equilibrium 0 = d{’ + ds” becomes 

( a )  In  the general case, where dx and dy are independent, this 

( b )  If one of the phases (that denoted by a single accent) 
contains but one component, then x‘ = 0, dx = 0 and the condi- 
tion of equilibrium is pfY = p y. 

(c) If the composition of one of the phases (that denoted by a 
single accent) be fixed, so that yf = k-x’, then dy = k-dx, 
plX and p’y have no meaning (just as dX and v,’ have no meaning), 
and the criterion of equilibrium becomes: j ’  = (p“= + I c .p”y ) /  

(1  + k ) .  By suitable choice of components, however, this case 
may be avoided; if, for instance, in the discussion of equilibrium 
between Glauber’s salt and its solution in wateri anhydrous 
sodium sulphate (y) and water (x) be chosen as components, 
Glauber’s salt will contain the two components in fixed propor- 
tions and dy = 142/180.dx; but if Glauber’s salt itself (y) and 
water (x) be chosen as components, then x f  = 0, as in case (b) .  

Equat ion f o r  the slopes of the equilibrium curves 

( 2 a )  T h e  general case. If two phases (e.g. an aqueous solu- 
tion of alcohol and its vapour) be in equilibrium a t  t and p ,  and 
again at t + dt and p + d p  (the values of X I ,  y’, x” and y” being in 
general slightly different in the two cases) the value of prX,  

in the second case will differ from that in the first by dp’,, 
and the value of p’Ix in the second case will differ from that in the 
first by.dp”,; but since in both cases the two phases were in equi- 
librium, d p l x  = d p l f x  and the accents may be omitted. Similarly 

Now the four variations dt ,  d p ,  dpx and d p y  are not independent, 

0 = pfx-dx + pIy*dy - pffx.dx - pLlly-dy. 
is equivalent to  the two equations plX = e / I  and ply = p If 

I I  

dpCLly = dpIfy = dpy .  

but are connected by the two equations (G 97) 

and 0 = q“dt - v”dp + x“dpx + yf fdpy 
0 = $dt - v’dp + x’dp, + y‘dpy 
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whence0 = ( ; - > f ) d t - ( - - g - - p ) d p + E - $ ) d p x  I f I  V’ V f /  ( 5 )  

on the assumption, of course, that neither y’ nor y” is zero. 
If x’ = xf’ = 0 (e.g. pure water and its vapour), the last term 

disappears and Eq.(5) is reduced to Clausius’ equation. If 
either x f  or x“ be not zero, the term in dpx  could be eliminated if a 
third equation of the type (G 97) were available, i.e., if there were 
equilibrium between three phases instead of two in the two- 
component system. 

In  still another case the third term would disappear, via.: if for 
certain values of t ,  p ,  andx” (but not for all of them as in one- 
component systems) the composition of the two phases should be 
the same, and therefore x ‘ / y f  - d ’ / y f f  = 0. In  such a case, if 
under the experimental conditions dt = 0 (vapour tension meas- 
urements), then by Eq. (5) ’  ( V f / y f  - V”/y”)  . d p  must be zero; 
and if V f / y ’  and Y”/y” are known to  be different, then d p  must 
be zero, i.e., p must be a maximum or a minimum. Similarly 
when d p  = 0 (boiling-point determinations). As Gibbs puts it: 
“It follows that for constant temperature the pressure is in general 
a maximum or a minimum when the composition of the two phases 
is identical; in like manner the temperature of the two phases is 
in general a maximum or a minimum for constant pressure when 
the composition of the two phases is identical.”44 This result is 
often spoken of as “Konowalow’s law;” familiar examples are 
furnished by the aqueous solutions of hydrochloric or acetic acid. 

Without loss in generality, by merely algebraic transformation, 
Eq. (5) may be put in another form viz.: 

Generalized, this is Gibbs’ “phase rule.” 

0 = (7’ y - ~ ” ~ ) d t  - ( d y  - v”y)dp - p f x y ( d x f  - x’/y’*dy’) + 
p f f x y ( d x f f  - x f ‘ / y f f  -dy“) (6) 

[From (1) : dp, = ptxdt  + p p x d p  + pxxdz + p x y d y ;  from derivs. of the thc. 
fnc.: pt, = - vX, ppx = u,; from Euler’s th’m.: u = xux + yuy, 7 = “7, + yvy, 

Eq. 

0 = %XX + VLlXYI 

in which further (vfr - v ” ~ )  may be replaced by (xlr - x ’ l y ) / t  

[from ( x ’ ~  = tnpy + ,u‘y and x v y  = t ~ ” ~  + pPy, since p’y = pkY1 

44 Trans .  Conn. Acad., 3, I56 (1876); Scientific Papers ,  1, 99. 
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This equation in its various forms is all that the laws of thermo- 
dynamics have to say about equilibria of the class considered; 
x l Y  - x ” ~  gives the number of calories gained by the (constant 
pressure) calorimeter when one gram of the component whose 
weight in the two phases is given by y’ and y” respectively is 
transferred from phase (‘) to phase (”); d, - v f f Y  can be obtained 
from density determinations; p f X y  and p’lXy must be determined 
experimentally or guessed, and as the equation for the general 
case involves both of them, it does not lead to direct methods for 
their determination such as are furnished by (2%). The problem 
dealt with as “illustration 2” belongs to this group. 

If x’ = 0, the last equation of the preceding 
section becomes 

If the experimental work be carried out at  constant temperature, 
the first term on the right becomes zero; if at  constant pres- 
sure, the second term becomes zero. 

(i) dt = 0: G’”’ vapour tensions of salt solutions,  et^.,^^ 
(y water). G”L’ measurements of “ the effect of pressure on the 
vapour tension of mercury etc.” in which mercury (y) is shaken 
with nitrogen under various pressures and the vapours analysed. 
G’S” vapour tensions of zeolites or of reversible colloids (y 
water). G”S’ dissociation of phosphorus pentachloride or of 
ammonium chloride (y) in presence of excess of chlorine or 
ammonia respectively. L”S’ effect of pressure on the solubility 
of salts (y) etc. 

(ii) d p  = 0: G’L’‘ boiling points of salt solutions etc. (y 
water). GI’L’ dew points (y water). L” S’ solubility determina- 
tions (x water), determinations of the freezing points of solutions 
(ywater). S’S” equilibrium between graphite (y) and martensite, 
etc. 

Quantitative relations between the slopes of the various equilib- 
rium curves may be obtained from Eq. (7) by eliminating p’lry 
as illustrated in (1);or values of p”xy may be determined from 
the results of one set of equilibrium measurements and used to 

(ab) x’ = 0. 

o = (2’ - X y ’ f ) / t .  dt - (71 - ~ , ” ) d p  + pr’xy(ddt - xr’/y’’ - dy”j (7) 

Some examples are: 

(6 G’ L‘ stands for “examples of equilibrium between a gaseous phase for 
which x = 0, and a liquid phase containing both components”, and so on. 
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predict the results of another, as in “illustration 1” below; or values 
of p’ lXy  may be given in the form of a “fundamental equation’’ 
and substituted in Eq. ( 7 )  

An important qualitative conclusion can be drawn from Eq. (7) 
by means of the theorem already established (page 320) as to the 
sign of p x y :  If dx: + dy = 0, (standard diagram), the last term of 
Eq. ( 7 )  after dividing through by dx”, becomes (2” + y”)/y”. 
P ” ~ , ,  = Dp”,,/Dx”, and will be negative for stable solutions. Hence 
if dt = 0, the sign of Dp/Ds will be opposite to that of 5’ - v ’ ’ ~ ,  
and if d p  = 0, the sign of D t / D z  will be the same as that of 2’ - 
x’lY. This is commonly known as “Le Chatelier’s law.” 

Illustration 1 

The problem is: Given the freezing-point curve fe and the 
solubility curve em, (fig. 7 )  to find the osmotic pressures of the 
solutions a t  the arbitrary temperature 9. The method suggested 
is: Compute values of pLlfX,, for points on the curves; correct them 
for temperature and so obtain values of pry at t = 8; and finally 
use the expression connecting bPx/dx with p r y  t o  find the osmotic 
pressures. For the solubility curve this is probably the best 
method of procedure; for the freezing point curve it might be 
better to work with p, ,  instead of p x y ,  and so avoid the practical 
difficulties involved in determining the slopes of the freezing- 
point curve. Whichever method be adopted, the argument be- 
gins with no assumptions bct  the laws of thermodynamics and 
the experimental data furnished by the curves; its development 
leaves no doubt as to what other experimental data must be 
secured. To shorten the equations, it is assumed that the 
specific heat of the solid and those of the solutions are independent 
of the temperature throughout the range of the computation, but 
it will be shown a t  the close how this restriction can be removed. 
Doubly accented symbols refer to the saturated or freezing solu- 
tions, singly accented to the solids, unaccented to the solutions a t  
t = e. 

(a) First the values of p’ lXy  for one gram of the solutions of the 
freezing-point curve may be computed by means of 

(2’ - X”y)/T.DT/DX = -p”xy/( l  - 2”) (8)  

CHEMICAL REVIEWS, VOL. I, S O .  4 
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[obtained from ( 7 )  by substituting T for t to  avoid confusion, setting d p  = 0 
to  agree with experimental conditions and 2’’ + y” = 1 to suit the diagram, 
remembering that  z.p,,+ yapxy = 0, and dividing through by dz.] Since in 
(7), x’ = 0, XI’ gives the weight of salt and y” that of mater in the 
solution; D T / D x  gives the slope of the curve fe measured with 
reference to the scales of t and of x. One value of 2’ - x’lY must 
be supplied, that at  z = 0 vis. -80 cal. (the latent heat of one 

gram of ice) will serve; since Ztt  = c’, and x ” ~ ~  = c u y ,  knowledge 
of the specific heats of ice and of the solutions of the curve 
together with x ’ I X y ,  (Le. the effect of concentration on the heat 
of dilution of the solutions) enables the value of 2’ - x’lY to be 
calculated for all other points on fe. 

( b )  The value of pxr for any solution (at t = 0) may be obtained 
from p’ lXy  for the sane  solution (at t = T, the pressure being the 
same in both cases) by means of 
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f f  
p x y  = e.pff,,/T + (e - TXC,, - x y / ~ )  -e.c,,.iog(~/T) (9146  

[from x = 67 + (; x f f  = T v f f  + f f f ;  X t  = X l f t  = C;  and v t  = C/ t ]  
No additional experimental data are required for the computation. 

(c) In  like manner from the curve em the rest of the values of 
y,, (at t = 0 )  may be obtained. [The letters 2” and y w  in ( 7 )  must be 
interchmged to  avoid confusion, giving (X‘ - x‘lX)/ T.DT/Dx = pnx,/xttI 

As the value of p f f X y  a t  the eutectic point e has already been 
found from the freezing-point curve, a value of %’ - x f f x  may be 
calculated for that point from Eq. (8), and it is not mathemati- 
cally necessary to bring in a new experiment; the specific heat of 
the solid, however, and those of the solutions along em, must be 
determined. 

(d )  The values of P ,  (the osmotic pressure of the salt, if one is 
dealing with solutions of a salt in water) may now be computed 
from dfy .bP, /bx  = - p f f x y  (Eq. 4); a form more conveiiient for 
the present purpose is v”,.DP,/Dz = - ( x f f  + y”) p f f x y / y f f ,  or 
(since in figure 7, x + y  = 1) d f y . D P , / D x  = - p f f x y /  (1 - df ) .  
This is equivalent to  

p x  + P‘ 2 

0 = JY,*dP + J F x y * d Z / ( 1  - x> (see Fig. 6 )  

in which the values of p x y  are those a t  t = 8 and p = p’  already 
obtained, and the values of v, are those for the solution whose 
osmotic pressure is sought. The numerical value of the second 
integral (using as upper limit the value of z for the solution 
whose osmotic pressure is sought) may be computed by integrat- 
ing graphically, numerically, or by use of an interpolation formula 
as may be most convenient; if ti, be known as a function of p 
(from density and compressibility determinations) the first 
integral can be expressed as a known function of P,; and by the 
methods of algebra, or by graphical methods, that value of P, 
can be found which reduces the sum of the two integrals to zero. 

9’ 0 

Thus if the thermal and density data are available, the o.smotic 
pressures at any arbitrarily selected temperature 8 can be cal- 

The abbreviation ‘ ‘ logt1 is used for “ l o g .  nut.” throughout. 
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culated from the freezing-point and solubility curves without 
more labour than is involved in most technical computations, and 
without introducing molecular hypotheses of any kind, or any 
other assumptions that might detract from the generality or 
reliability of the results. 

The operations involved in the computation of osmotic pres- 
sures from the freezing-point curve are summarized in Eq. (10). 
where x + y = 1 and fi  is written as abbreviation for 2’ - x ” ~ .  

e 
1 - 2  

The formula for computing P,  from the solubility curve may be 
obtained from Eq. (10) by multiplying the term @/T2*DT/Ds by 
-sly, leaving all the rest unchanged. If in these two equations s 

be replaced by y and y by x wherever they occur (in subscripts, 
factors and differentials) formulas are obtained for computing 
P,, the “osmotic pressure of the water;” in the expression derived 
from Eq. (lo), DT/Dy = -DT/Dx is the slope of the solubility 
curve (fig. 7) with changed sign, in the other that of the freezing- 
point curve. 

Eq. (lo), and all similar formulas, may be modified in three 
different ways: 

1. It may be freed from the only special assumption made (viz.: 
that the specific heats are independent of the temperature) 
and thus be made as general as the laws of thermodynamics 
themselves, by replacing (e - T )  -cxy by T J C , ~ ’  dt, and c,,.log(e/T) 

by T ~ c , , l t - d t ,  etc. 
2. It may be very much simplified by omitting all terms that, 

in most cases a t  all events, contribute but little to the final result. 
To avoid the risk of using such a simplified formula in cases 
where it is inapplicable, the assumptions made in simplifying it 
should be listed. 

e 
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3. It may be modified by introducing general (though not 
universal) laws discovered in the laboratory; such laws are often 
expressed in the language of some molecular or atomic theory, 
but so long as the relations asserted to exist between the experi- 
mental quantities are clearly stated and reasonably accurate, 
the form of words chosen to express them is immaterial. 

To give a few examples. V might be expressed in terms of p 
and t by van der Waals’ equation, or by Dieterici’s; specific heats 
might be expressed as functions of the temperature by means of 
some one of the equations recently proposed; in formulas which 
include a heat of vaporization, this might be expressed in terms 
of the boiling-point temperature by means of Trouton’s law in 
its original or improved form; Thomsen’s generalization connect- 
ing heat of solution with contraction might be introduced, or 
relations derived from the law of corresponding states, from the 
“law of maximum work” or from the “third law of thermody- 
namics;” even such quantities as refractive index, electrical con- 
ductivity etc. have been correlated with the thermodynamical 
data. What the resulting formulas may lose in accuracy they 
gain in interest by relating quantities drawn from widely dif- 
ferent branches of chemistry. 

By way of example, certain simplifying assumptions will be 
introduced into the calculations of the “illustration.” 

. 

S impl i f y ing  assumptions 

The assumptions made in a given case need hold only over a 
limited range viz., that covered by the computation in question; 
their applicability outside of the range in question is obviously 
a matter of indifference. 

1. Specific heats independent of temperature:-ct = 0. Cus- 
tomary when the range of temperature is not great. 

2. Heat  capacities of solutions a linear func t ion  of their composi- 
tion:-c,, = 0, i.e. c, and cy independent of z; hence p X y  = 
O . p L l f x y / T  - (0 - T ) . X ” , ~ / T ,  see Eq. 9. Assumptions 1 and 2 
together make 2’ - x ” ~  a linear function of T ,  since X t Y  = c y .  In  
the case of sulphuric acid solutions the specific heats agree with 
the linear formula within about 10 per cent. 

Those most commonly made are: 
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3. Meat of solution constant for all points o n  the solubility and 
freexing-point curves (a special case of Kopp’s  law) :-This involves 
neglecting the difference between the specific heats of ice and 
water; it is a dangerous assumption, justified only when the range 
of T is not great, or when the heat of solution is (arithmetically) 
large. 
4. No heai of dilution:- xXy= 0 and c,, = 0 (since xt  = C); 

this involves all the consequences of (2), and in addition that 
p x y  = 8/T.p”,, (Eq. 9), Le., that p,, is proportional to t ,  and 
therefore that the osmotic pressure of any given solution is pro- 
portional to the temperature, except in so far as temperature may 
affect the compressibility and the specific volume of the solution. 

5.  Liquids  and solids incompressible :- v, = 0; commonly, as- 
sumed for experiments at ordinary temperatures and pressures. 

6. No contraction o n  dilution:- vxy = 0, i.e. v, independent of x. 
Even for sulphuric acid solutions containing up to 75 per cent 
acid, this would introduce an error in v, of less than 10 per cent. 

If all four assumptions be made (Number 2 is included in 
Number 4 and Number G is not needed) Eq. (10) becomes v, f dP, 
= 8 / 3 J l / T 2 ’ D T / D x . d x ,  and the osmotic pressure of the salt in 
millimeters of mercury a t  t = 8 for solutions from x = 0 to x = e 
(where x + y  = 1) is given by 313600./3/v,.(I/T0 - l / T ) ,  
where jj = -80 is the latent heat of 1 gram of ice, To= 
273.1 is the melting-point of ice, and T is the temperature a t  
which the solution is in equilibrium with ice. If P ,  be replaced 
by P,, and the word “ice” in the definitions of /3, T o  and T by 
“salt,” the “osmotic pressure of the water” may be calculated 
for solutions from x = e to IC = 1; the other two equations derived 
from Eq. (10) are not reducible to such a simple form. 

Fundamental  equations 

Eq. (6) gives the slopes of the equilibrium curves in terms of 
xy, v, and pxy ,  and if each of these quantities were known for both 
phases in terms of t ,  p ,  x and y ,  the solution would be complete. 
An equation for each phase expressing p, in terms of t ,  p ,  x, y 
and known constants would contain more information than is 
required for this purpose, while similar expressions for f if 
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available would permit numerical solution of all thermodynamic 
problems, since from them by the relations of page 317 expres- 
sions for E and q and consequently for all the thermodynamic 
functions could be derived. [q = - b{/bt;  E = { - t .b{ /d t  - 
p.b{/bp]. Such an expression is called by Gibbs a “fundamental 
equation.” 

If the object were to  solve as accurately as possible an individ- 
ual problem like that of “illustration l”, little would be gained by 
assembling the data in a fundamental equation; on the other 
hand the use of fundamental equations in which are incorporated 
general laws or simplifying assumptions not only leads to a gain 
in algebraic compactness, but, by gathering the assumptions into 
named groups, it tends to emphasize the restrictions under which 
the results obtained are valid. The follot~ing are some of the 
simplest forms : 

1. One-component liquids or solids. Applicable to  substances 
such as L’ and S’ (page 324) whose composition is not changed 
during the experiment. For moderate ranges of temperature and 
pressure well below the critical values i t  may be assumed that 
liquids and solids are incompressible (a, = 0), that their specific 
heats are independent of the temperature ( E t  = 0), and that their 
coefficients of thermal expansion are negligible (at = 0, whence E ,  
= 0, since ij, = gtp = -&). Substituting these values in the 
expressions for the derivatives of E and r ]  (pg 317) and integrating47 
there follow Z = + Et, and $ = E + E-log t ;  whence4s f = 

p = 2 + t(?? - - log t )  + p v .  The specific heat may be 
determined directly; E = i;: - et - p v  may be computed from 
the heat of formation, i ts  value obviously depending on the zeros 
chosen for x; while a numerical value of can be determined only 
if the zeros for r] have been fixed and some reversible method for 
bringing the substance into this zero state has been discovered and 
measured. To find the slopes of the equilibrium curves, however, 
the values of ZT need not be known here or even in the funda- 

47 Gibbs wrote E and H ;  but as these quantities refer t o  l gram, the  bar has 

4 8  Trans .  Conn.  Acad. ,  3, 213 (1876), footnote, Eq. (A); Sci. Papers, 1, 153. 
been written over them. 
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mental equations for solutions, since the quantities occurring 
in Eq. (6) (viz., x,. E ,  and p x y )  do not involve p. 

Setting t = 0 in the above expression for <, E appears as the 
value of Z for the liquid or solid at  the “absolute zero”. To take 
this seriously however would be a misuse of the formula, which is 
valid only for the limited range of temperature over which the 
specific heats may be regarded as approximately constant; if 
the range is to be extended, the assumption c t  = 0 must be 
replaced by + J f ( t ) . d t  - t . f l  + p v  
- t .  J j ( t )  .d t / t ,  the lower limits of the integrations being those 

for which E and a were defined. Similarly for work running to 
very high pressures, the assumptions E ,  = 0 and zJP = 0 might 
have to  be abandoned. In the case of crystallized solids, an ex- 
pression has been evo1vedd9 representing as a function of t which 
contains but two arbitrary constants for each substance, and is in 
such good agreement with the data at  present available that it has 
been seriously proposed to choose the zero of the thermodynamic 
temperature scale as the temperature for which E and 15? may be 
defined; as is customary, the value zero would be allotted to E 
and to for the chemical elements under the standard conditions 
so chosen. If it be assumed that the Thomsen-Berthelot “law 
of maximum work’’ [viz.: 2’= Q, whence qA - qB = 0 for two 
states of the system at the same temperature and pressure] is 
valid for crystalline solids at  the thermodynaniic zero, it follows 
that = 0 for all substances in the crystallhe modification 
in which they are stable at  zero. The “law of maximum work” 
in its generality was successfully combatted by DuhemsO and 
others; it holds very well for most reactions between solids at 
ordinary temperatures, and it may hold absolutely for crystalline 
solids at the thermodynamic zero; but if like most other general- 
izations it should prove to  have exceptions, the title “third law of 
thermodynamics” is likely to prove embarrassing. 

= f ( t ) ,  leading to 5: = 

4 9  Lewis and Gibson: Jour. Am. Chem. SOC., 39,2565 (1917). 
6 0  P. Duhem: Thermochimie d prbpos d’un livre rdcent d e  M .  Marcelin Berthelot, 

Paris, 1897, Merinann; Introduction a la mdchanique chimique, Gand, 1895, Hoste. 
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2. One component gases, “perfect gas.” Following the same 
procedure, the assumptions ct = 0 and p V  = m a t  (m the mass of 
the gas, a a specific constant)51 lead to: 

- 
f = p  = E + t ( C  -a - ( C - a ) l 0 g t + a l 0 g m / V ) ( G . 2 6 4 )  

= + t ( C  - g - log t + a log p / a )  (G. 268) 

This expression may be used t o  find p y  for solutions with one 
volatile component (type G’L”, G’S’ )  from measurements of 
their vapor tensions, in the many cases where the vapor con- 
forms to the assumptions made in deriving the equation. 

The value of 2 for the gas (and therefore the value of 2, 
since 2 = E + ct) can be found if the specific heats and 2” for 
the same substance in the solid or liquid form be known, by 
measuring 2 - 2’’ (the latent heat of vaporization of the solid) 
at  some known temperature; if in addition R” for the solid be 
known, a for the gas can be calculated, since a t  any temperature 
and pressure a t  which the two are in equilibrium f = f” .  Thus 
the generalizations used to find 2 and for crystalline solids 
can be used to help find and for gases as well; and the need 
for even a single equilibrium measurement would be escaped if 
van der Waals’ law of corresponding states could be trusted to  
furnish the vapor-tension curve, the chemical formula to suggest 
the critical constants, and Trouton’s law to  supply the latent 
heat. Attempts are being made to  improve the generalizations 
in question with this object in view, and are meeting with some 
success. 

A fundamental equation valid over a wider range of pressures 
has been deduced by van Laar62 from van der Waals’ equation 
connecting temperature pressure and volume. 

3. “Perfect” or ((ideal” gaseous solutions. When oxygen (x 
grams) and nitrogen (y grams) unite to  form a gaseous solution, no 
heat is evolved and there is no contraction or expansion, hence 

~4 From pv = mat and p v  = nRt, R = ma/%, useful in transliterating. When 
the gas is an  element or a chemical compound, m / n  is its molecular-weight; so, in 
that  case, Gibbs’ a = R/(molecular-weight). 

5z  J. J. van Laar:  Die Thermodynamik in der Chemie, Amsterdam and Leipzig, 
1893, Engelmann. 
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x = x.Rl + y.j&and V = z.V1 + y . v 2  [Symbols with thesub- 
script 1 refer to pure oxygen, with subscript 2 to pure nitrogen, 
with no subscript to the solution]. Experimental study of 
equilibria of the types G”L’ and G”S’ shows that px for oxygen as 
a component of the solution has the same value as p for pure 
oxygen at the same temperature if in both cases the weight of 
oxygen per cubic centimeter of the gas be the same. Since both 
oxygen and nitrogen are approximately “perfect gases” as 
defined above, the above relations lead to  px = 3- t (El - 
a, - El log t + a.log xp/ (ux  +by)}  and a similar expressi0n6~ for 
p y ;  since { = x . p X  + y e p y ,  the fundamental equation for perfect 
gaseous solutions (G. 293) is found. [a and b are the constants 
for oxygen and nitrogen respectively in the equation pvlt = 
const; a = 1.98/32 and b = 1.98/25]. From the expression for 
px  or py, p x y  = - abt/(az + by), for use in Eq. (6). The quan- 
tity azp/ (az  + by) is often represented by the symbol 7rl, and 
spoken of as the “partial pressure” of the oxygen, similarly 
bpy/(az + by) = 7rz is the “partial pressure” of the nitrogen, the 
sum of the two gives p, the pressure of the gas; the quantity 
az/(az + by) is sometimes called the “mol-fraction” of the 
oxygen. 

In cases where the potentials of the components of a gas at  
ordinary temperatures and pressures prove to be in fair agreement 
with the above expressions for pLx and py, the gas is said to be a 
“perfect” or “ideal” gaseous solution of the components; where 
there is no such agreement, the components are said to have 
“reacted chemically”-this is the only definition we have for 
this term, and the nomenclature is somewhat indefinite, for if the 
want of agreement is not very great it is sometimes ascribed to 
“deviation from the laws of perfect gases.” Whenever two gases 
mix without evolution of heat or change of volume it is customary 
to assume that they form a “perfect gaseous solution,” just as in 
determining the vapor density of a new organic compound it is 
customary to assume that its vapor obeys Boyle’s law, closely 

63 The above expression for px corresponds in form to Gibbs’ Eq. 293; the frac- 
tion may be made symmetrical by writing - -a *  log a + a .  log azp/(az + by) 
instead of a.log xp/ (ax+ by). 
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enough at  all evaits for the purpose in hand. By means of this 
assumption it is possible to  calculate values of px  and p s  for solid 
or liquid solutions of two volatile components from the results of 
experimental study of equilibria of the types G”L” or G”S‘’. 
4. “Perfect” liquid or solid solutions. Making the same simple 

assumptions as for one-component liquids or solids, and assuming 
further that there is no heat of dilution and that the specific 
volume is a linear function of x / ( x  4- y), there follows: px = El 
+ t I E ,  - H1 - cl log t + f(x, y) 1 -k p v I .  If this equation holds 
over a range of concentrations that includes z / ( x  + y) = 1, 
the values of El C1 H1 and vl are obviously those of the pure 
component in the same state of aggregation as the solution; 
otherwise they must be regarded as constants to  be determined 
by experiments with the solutions. An expression for .f(z,y) 
may be found experimentally by the study of suitable equilibria; 
if it should prove possible to express f(x,y)  in the form a.Zog 
crx/(crx + py), where over a moderate range a and 0 are indepen- 
dent of temperature pressure and composition, the solution may 
be said to be “perfect”5J for the given range; thus, for “perfect” 

The formulas given in elementary text-books of physical 
chemistry for the solubility curve, and for the osmotic pressures, 
freezing-points, vapor-tensions, etc. of solutions, may be derived 
from Eqs. (4) or ( 7 ) ,  Le. from the two laws of thermodynamics, 
by means of this fundamental equation. 

T h e  essence of this method of dealing with the matter i s ,  that the 
problems are put before the student with the essurance thtst they 
can always be solved if certain specified experimental data are 
available, and the simple formulas are presented merely as partic- 
ular solutions valid only when certain of these data have negligibly 
small or otherwise special values.55 All molecular “explanations” 
are omitted in this method of deducing the formulas, because they 
are irrelevant to  the argument; it is their place to explain why the 

64 The term “perfect solutions” is often used t o  denote the group here distin- 

5 5  This view has been emphasized by G. W. Rlorey, Jour. Franklin Inst. 194 

- _  

solutions, pay = - a p t / ( a x  + by). 

guished as dilute  perfect solutions. 

425 (1922); see his closing sentence. 
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data necessary for the calculation have the values observed in 
the laboratory; but if the data themselves be available, whether 
“explained” or not, the problems can be solved. 

Osmotic pressures. Replacing p x y  in Eq. (4) by its value from 
the fundamental equation, there follows v,.bP,/bx = apt/ 
(ax + py); which on integration [up = 0; P ,  = 0 when x = 01 
gives v,P, = pt-Zog(a.r + py)/py. If the solutions be dilute, 
i.e. if ax be small in comparison with py, two58 simplifications can 
be introduced:-in the first place the logarithm can be replaced 
by ax/py [since when h is small, log ( l + h )  = h approx.], and 
in the second place V may be substituted for y o, [Euler’s theorem]. 
Making these substitutions, there results P,. V = axt, which if 
transliterated [a = 1.98 i / M x ,  where M,, is the “molecular 
weight” of the dissolved substance and i is van’t Hoff’s constant; 
31360 P ,  = osm. press. in mm. mercury] will be recognized as 
the formula of van% Hoff. 

Solubilities.-Replacing p,, in Eq. (7)  by its value from the 
fundamental equation, there results 

(2’ - x i ) / t 2 * d t  = a p / ( a x  + py) . (dz  - z/y*dy) 

which holds both for solubility curve and for freezing-point curve; 
y gives the weight in the solution of the component common to  
both phases, and 2’ - x;’ gives the number of calories gained 
by the (constant pressure) calorimeter when one gram of that 
component is transferred from the solid to the solution. 

In  the case of the solubility curve, z gives the weight of solvent 
in the solution. Integrating with x constant, there results 

where j1 is the value of 2’ - &‘ when t = tl. Neglecting 
the second term on the left, neglecting py in comparison with 

56 I n  van’t Hoff’s second paper [Zeit. phys.  Chem. f ;  483 (1887)l both substitu- 
tions are made; in his first paper iK. Suen. Vet. Handbingar 11, 3 (1886)l a formula 
was obtained which involved the first only. See Bancroft; Jour.  PhzJs. Chem. 
10, 318 (1906). The (more accurate) quantity y.v, isoften called “the volume of 
the water in the solution”, i t  can be replaced by V “the volume of the solution” 
only when x.vz is negligible. 
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ax, and transliterating, this gives van’t Hoff’s formula for the 
solubility curve. 

Here y gives the weight of 
solvent in the solution. Integrating the general expression of 
the preceding paragraph, with y constant, the terms on the left 
will be the same as for the solubility curve, while the term on 
the right becomes $.log(crxl + py)/(crx2 + pyjwhich if a x 2  be 
small in comparison with py (dilute solutions) and x 1  = 0, is 
very closely equal to  -crz2/y. For dilute solutions, moreover, 
the second term on the left will be negligible, since t2 - t l  will be 
small. By making these substitutions and transliterating, van? 
Hoff’s expression for the depression of the freezing-point may be 
obtained. 

Vapor-tensions.  If only one component (yj  be volatile 
(G”’’,G’S’’j and if it be assumed that G‘ is a “perfect” gas, and 
L” (or 8”) a “perfect” solution, expressions for the effect of 
temperature or of pressure on the solubility of the gas, or for the 
effect of temperature or of concentration on the vapor-tension 
of the solution can be obtained by methods similar to those of 
the preceding paragraphs. If p = b, the graph of the vapor- 
tensions ir2 on a diagram for which t is constant and the abscissas 
give the values of crz/(crx + by), will be straight line; by choice of 
a suitable value for a/b it is always possible to  bring any three 
selected points of the curve into alignment, and if when this is done 
the curve as a whole is fairly straight, the formulas for “perfect” 
solutions may be counted on to give reasonably close results. 

If both components be volatile, and both phases “perfect”, 
then from the fundamental equations, neglecting the specific 
volume of the liquid in comparison with that of the gas, a .  log 7rl = 

a- log  az/(ax + py) + f ( t )  ; whence, for any given temperature, 
rl raised to the power a l a  is proportional to az/(crx+@y) and 
similarly r2 raised to the power b / p  is proportional to py / (ax + py j .  

It is only in the special 
case where a = a and p = b that 7rl and 7rz (and consequently 
also their sum, the vapor tension of the solution) can be repre- 

E. W. Washburn: Introduction to the principles of physical chemistry, New 

Depression of the freezing-point. 

5.  “Ideal” liquid or solid s o l u t i o n s . ~ ~  

York, 1915, McGraw-Hill Book Co., p. 148. 
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sented by straight lines on a diagram whose abscissas give 
ax / (ax + by) or indeed Ax / (Ax + B y )  where A and B are any 
constants. This special group of “perfect” solutions has received 
the name “ideal” solutions; for them the values of Q! and p can 
be calculated from the vapor densities of the components. Where 
one or both of the components are non-volatile, however, the dis- 
tinction loses its sharpness; if by the choice of suitable values for 
Q! or 0 or both of them, experimentally determined freezing-points, 
solubilities, etc., can be brought into fair accord with the formulas 
for “perfect” solutions, then the solution experimented with is 
“perfect;” if in addition the values of 1.98/a and 1.98//3 are 
approximately equal to the “molecular weights” of the compo- 
nents as deduced from the ordinary chemical formulas or from 
some molecular theory, then the solution is “ideal.” 

For all “ideal” solutions, as may be seen from the fundamental 
equation, not only is pLx a one-valued function of t ,  p ,  and the “mol 
fraction” ax/(ax + by), but the mol fracti0n5~ is also a one-valued 
function of px; and for many purposes the numerical value of the 
former is as useful as that of the latter. Since concentration is 
supposed to be a “concrete” conception, while potential is 
“abstruse” there is a tendency to force as many solutions as 
possible into the “ideal” group, and to express an experimentally 
determined potential in terms of a fictitious “concentration” 
arrived at  by assuming the solution to “contain” as many poly- 
mers, addition-compounds, etc., as may be necessary to make the 
mol-fraction take the value desired. As a result, the term 
“concentration” has lost precision; and it is sometimes dificult 
to  decide whether a given equation expresses an experimentally 
determined relation between the freezing-point (for instance) 
of a solution and its analytically determined composition, or on 
the other hand merely presents an alternative method of re- 
cording the freezing-point, without saying anything a t  all about 
the analytical composition of the solution frozen. 

6 8  Planck calls ax/(ax + by) “concentration;” with G. N. Lewis this word 
means ax/RV, he calls ax/(ax + by) “mol-fraction,” and ax/by “mol ratio.” 
The name “numerical concentration” is sometimes given to  ax/(ax + by). 
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Perhaps this method of recording thermoaynamic data would 
be less uncritically employed, if it were generally recognized that 
it is not possible to employ it universally. To assume that in 
every case identity of potential means identity of “concentration,” 
would be to assert that the concentration of each constituent, 
no matter what or how msiiy might be assumed, must have the 
same value in the upper as in the lower layer when ether and 
water are shaken together; but this would be to say, that the 
analytical composition of the two layers must be the same. 

Illustration 2. Duhem-Margules equation 

In experiments to determine the vapor-tensions of aqueous 
solutions of alcohol, the composition of the liquid is varied while 
the temperature is held constant, the pressures are those at  which 
the two phases are in equilibrium, and the variations in the poten- 
tials of the two components of the liquid [unaccented symbols] 
are related by 

x * d p x  + y . d p y  = V * d p  (G 97, dt = 0 )  

If it be assumed that the vapor is a “perfect gaseous solution” 
of the two components, it follows from the fundamental equation 
that (for the vapor) d p f x  = atad Log rl; since the two phases are 
in equilibrium, this expression may be substituted for dp,, and 
bted log r2 for d p y  in (G 97) above. If moreover the vapor-tension 
measurements were made at  temperatures well below the critical 
temperatures, as is the case with those published for aqueous alco- 
hol, the term V - d p  is negligible in comparison with the other two 
and may be omitted. Making these substitutions, there results: 

(11) 

which is often spoken of as the L‘D~hem59-Margules equation”. 
[a = 1.08/46; b = 1.98/18; rl + rz = T the vapor-tension of the 
solution.] 

axed log rl + byad log r2 = 0 

6 9  Duhem: Ann. de I’Ecole norm. sup. (3) , 4, 9 (1887); Zei t .  phys.  Chem., 36, 
483 (1900). 
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By means of this equation, if the values of r1 are known those of 
7r2 can be calculated; but as the experiments necessary for a direct 
determination of rl (viz,, measurement of the vapor-tension and 
analysis of the vapor) also give values of 7rq, the computation 
could serve only as a check on the experimental results and on the 
assumption that the vapor is a perfect gaseous solution of the 
components. 

Writing Eq. (11) in the form 

it appears as a differential equation from which, if 7r were known 
as a function of the composition of the solutions, r1 and therefore 
the composition of the vapor, might be found. The equation, 
however, is not linear; and the only solution hitherto suggested, 
that of Margules,60 assumes 7r to be given as a function of the 
concentration by an interpolation formula of very special form. 
Until methods have been devised for finding the values of the 
coefficients in this formula from the experimental data, this 
solution in its generality is unworkable; although Margules has 
shown that, by introducing simplifying assumptions, approximate 
results may in some cases be obtained. Marshall61 and Bose’s62 
method of computation by approximation, on the other hand, has 
proved satisfactory in practice. 

It is possible to arrive at  a numerical solution of the equation by 
means of an abacus constructed of rods suitably ruled once for 
all with straight lines. If the logarithms of the vapor tensions n- 
be plotted against u x / ( ~ ~  + by) as abscissas, and the rods be 
moved parallel to  the ordinate axis until their pointed ends touch 
the log 7r curve, a number of curves can be traced by eye across 
the rods, to which the segments of the straight lines are tangent. 
Each of these curves presents a particular solution of the differ- 
ential equation for the given experimental values of n-; but only 

60 Wien. Alcad..Ber., 104, I1 A, 1243 (1895). 

62 Physik. Ztschr., 8, 353 (1907); Zeit. p h y s .  Chem., 66, 480 (1909). 
Jour. Chem. Soc., 89, 1350 (1906). 
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one of them fulfils the boundary conditions that n1 = 0, at  x = 0 
and r2 = 0 at  y = 0; the slope of this curve at  any point, i.e. 
for any composition of the liquid, gives the ratio nl, nz, and 
therefore the composition of the vapor. In order to decide which 
curve to follow, some assumption may be niade as to the partial 
pressures for the dilute solutions, or a single analysis of the 
vapor may be made in the laboratory; this would serve to iden- 
tify the curve and the compositions of the other vapors could 
then be read off. 

To rule the rods, the ends are made to touch a straight line 
parallel to the axis of abscissas whose ordinate may be taken as 
zero; straight lines are then drawn from a point on the right whose 
abscissa is 1.0 and whose ordinate is log h, to a point on the left 
whose abscissa is zero and whose ordinate is log (1 - h ) ,  h being 
given in turn all values from 0.1 to 0.9. The graph so obtained 
(Fig. 8) is the solution of Clairault’s equation. The slope of ench 
line is proportional to log h (1 - 11): and where the abscissa 
a x / ( a x  + by) = n, its ordinate is v . l o y  h + (1 - n ) . Z o g  (1 - h )  
when the rod is being ruled, or n e  log h T + (1 - n) e log (1 - h)n  
after the rod has been moved up until its point touches the log n- 
curve (Fig. 9). For the curve that fulfils the boundary conditions 
the ordinates are n - l o g  nl + (1 - n) .log n2, so that this curve if 
provided with a base line and a suitable scale of ordinates would 
be the { curve for the solutions at  the temperature of the vapor- 
tension measurements; its slope is log (nl~n-z), and if the straight 
lines are ruled for equal intervals of 11, every fifth line thicker, the 
“mol-fraction” of the vapor can be read off without difficulty. 

Figures 8, 9, 10 give :in idea of the limitations of the method 
and of the accuracy obtainable; the abacus from which they :ire 
photographed was constructed by Professor Rurt-Gerrans from 
fifty quarter-inch-square brass rods, about 75 cm. long, finished 
black and ruled in white; the scale of ordinates is 200 em. between 
h = 1.0 and h = 0.1 JTrewsky‘s values of Zoy n for aqueous solu- 
tions of alcohol at  3!3.76°C.6d were plotted, the rods adjusted to 
the curve, and a photostat made of the useful part with linear 
dimensions three-quarters of those of the abacus. 

63 Thirty-one experimental points; Z e d .  phys.  Chenz., 81, 1T (1913). 
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Wrewsky’s analysis of the vapor given off by-the liquid con- 
taining 27 mol-percent alcohol (viz : 60.5 mol-percent alcohol in 
the vapor) was used to identify the curve, which was then drawn 
with ink on the photostat, rod by rod, its slope being determined 
by interpolation between the slopes of the lines of the abacus; 
this is slow work, but there is no uncertainty as to the proper 
position of the curve. Figure 10 shows part of the curve SQ 
drawn, viz. that  from 15 to 39 mol-percent alcohol in the liquid 

FIG. 10 

(13 rods) ; the diagonals corresponding to 60 mol-percent alcohol 
in the vapor are thicker than the others, the diagonals immedi- 
ately below them correspond to 61 percent and so on. The three 
dots give Wrewsky’s results with liquids containing 23, 27 and 
37 percent alcohol. 

For liquids containing from 17 to 70 mol-percent of alcohol, 
the compositions of the vapors read from the curve agree with the 
experimental values within less than 1 mol-percent of alcohol; for 
9 percent liquid the curve gives 46 percent in the vapor and 

CHEMICAL RBYIXWS, YOL. I, NO. 4 
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Wrewsky found 48.3; for 7 percent liquid the curve gives 41 
percent and experiment 45.5 percent. The segments of the 
ruled lines which bound the curve are spaced at intervals of one 
mol-percent alcohol in the vapor for liquids containing up to 55 
mol-percent alcohol; from 57 to 63 percent the interval is 3 per- 
cent; from 65 to 69 percent, 5 percent; above 71 percent, 10 
percent. Obviously, close results are obtainable only when 
the composition of the vapor is not too near that of the liquid; 
but as the discrepancies between calculated and observed partial 
pressureP4 occur just where the spacing is widest, they can not 
be ascribed to errors in drawing the curve. 

64Recognized by Wrewsky: Zei t .  phys. Chem., 83, 583 (1913); he seems willing 
to ascribe them t o  experimental errors (Zoc. cit., p. 584). 


