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TYPES OF CHEMICAL REACTIONS 

Chemical reactions proceed by a great variety of mechanisms. 
In many reactions there is light emission of a kind undoubtedly 
associated with electron transitions. The overwhelming majority 
of reactions go faster with a rise in temperature. Of necessity 
endothermic and exothermic reactions are equal in number, 
although the latter are more apt to proceed spontaneously. 
Reactions in the solid phase are rare but very many examples of 
reactions in solutions, in the gas phase, and on surfaces can be 
cited. Reactions in solution are frequently instantaneous. 
These are generally known to involve the combination of ions. 
Reactions in solution involving the breaking of an electron pair 
bond are generally slow and proceed more rapidly with a rise in 
temperature. Such bonds belong to a class known as homopolar 
and will be the chief concern of this paper. Many bonds which 
have all the properties of the homopolar bond in the gas phase are 
polar in solution. Two atoms are really linked by a chain of 
electrons. If the weak link is the electron pair bond we speak of it 
as being homopolar. If it is between the positive nucleus and an 
electron we say it is polar. Naturally the latter link, which is an 
electrostatic one, is much weakened by solution in a substance of 
high dielectric constant. In the gas phase the weak link is 
probably always the homopolar bond. 

A large class of reactions proceeds without involving radiation 
at any step. The energy necessary to permit the breaking and 
reforming of homopolar bonds comes from violent collisions. 
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Since the energy known to be used in reactions is often insufficient 
to  break either bond outright, the bonds must weaken each other 
as they approach. Thus upon collision certain bonds go over into 
new ones by a gradual or adiabatic process. It is this very general 
type of reaction that has been most satisfactorily treated by the 
quantum mechanics and that will be discussed here. 

If the bond between two atoms depended only on the distance 
between them and not on the location of other atoms, valence and 
activation energy would play a far less prominent rBle than they 
do. Actually an atom attracts other unsaturated atoms until its 
valences are satisfied, after which it repels all others. If with 
three atoms of equal valence we want the reaction 

Y + xz = YX + z (1) 

to  occur we must somehow force Y to come so close to X that X 
becomes undecided to which atom it belongs. This state of inde- 
cision is the activated state. The energy expended in forcing the 
atom Y to approach X is the activation energy. 

Molecules (or atoms) in the liquid or gaseous state are moving 
with random velocities. A fraction of the molecules, increasing 
with temperature, travel with enormous velocities. When two 
of these fast groups collide, head on, the atoms in the different 
molecules get as near to each other as they are to their former 
partners, with the result that there may be a change of partners 
and a bimolecular reaction. A unimolecular reaction is a violent 
internal collision with a consequent change in the partners that 
are bound together. In some cases the change is a dissociation 
occurring as soon as the energy concentrates in the right bond. 
Rice (1) has considered unimolecular reactions in connection with 
predissociation. 

NATURE OF CHEMICAL BONDS 

The forces holding atoms together all arise from the fact that 
they are composed of positive and negative charges and, in fact, 
roughly one-tenth of the binding energy in a homopolar bond may 
be calculated simply by using the inverse square law between 
charges. The electrons, to be sure, must be assumed to have the 
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cloudlike probability of distribution given by quantum mechanics. 
This coulombic binding, or the coulombic integral, is evaluated by 
integrating the coulombic potentials over the electron clouds. 
The assumption that a group of atoms with their positive nuclei 
and electrons must satisfy a Schrodinger equation and the Pauli 
exclusion principle introduces in addition an entirely new sort of 
potential energy between atoms, called the interchange binding 
or interchange integral. To understand more clearly the nature 
of this interchange integral we shall digress somewhat at  this 
point. 

For a hydrogen atom we have the Schrodinger equation: 

The potential energy V has the form V = -e2.  2, y and z are 
r 

ordinary rectangular coordinates. p is the electron mass and h 
is Planck’s constant. Equation 1 has only physically interpret- 
able solutions, #, for particular values of the energy E. tc, is 
called the characteristic function or eigenfunction, and E the 
characteristic value, or eigenvalue. The values of E are, of 
course, the energy levels of hydrogen. The 6’s are functions of 
the coordinates of the electron 2, y, z and certain integers n, 1, m. 
E,  on the other hand, does not depend on the coordinates of the 
electron but does depend on the quantum numbers n, I, m. Thus, 
for each particular set of values for the quantum numbers we have 
a particular # and a particular E. n, the principal quantum 
number, goes from 1 through the positive integers. The quantum 
number 1 is always less than n. 1 = 0 for s electrons, 1 for p 
electrons, 2 for d, etc. For a particular value of n and m we can 
have the 21 + 1 values of m going from - E  to +l. These 21 + 1 
values for m are all the permitted projections of the angular 
momentum vector, I, along the axis of an applied magnetic field. 

The probability of an electron being at  some point in space is 
proportional to the value of #2 at that point, so that two electrons 
with any of their quantum numbers different will not have the 
same probability of being at  all points in space. The same system 
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of quantum numbers that serves to describe hydrogen enters 
automatically through the Schrodinger equation into the descrip- 
tion of every atom. For atoms with more than one electron the 
potential energy is simply the sum of all the attractive terms 
between the nucleus and the electrons plus all the repulsive terms 
between the electrons. 
1 is that a Laplacian, 

for the coordinates of 

The other modification made in equation 

a2u azu azu -+ -+-  a x i ~  a yi2 azi2 

each new electron is added. The eigen- 
function for the new equation will be approximately a product of 
hydrogen-like eigenfunctions 

u = $1 $2 e . . .  $78 

where for each $ we can specify a set of integral quantum numbers 
n, I, m just as in hydrogen. It might be supposed that all the 
electrons would choose the same lowest set of quantum numbers. 
On the contrary the Pauli principle states that not more than two 
electrons in one atom can have the same set of quantum numbers 
n, I, m. In order to explain the Zeeman effect for large atoms it 
was necessary to assign to all electrons a fourth quantum number, 
S.  The spin quantum number, S, can have only values of + or 
-- :. If two electrons in an atom have the same quantum num- 
bers n, I, m, the spin quantum numbers must have opposite 
signs. Thus, no two electrons in an atom can have all four 
quantum numbers equal. Two electrons in separate atoms, how- 
ever, may have all four quantum numbers equal. The general 
statement of the Pauli principle then is that no two electrons can 
have the same eigenfunction, $8,  where S is the spin part of the 
eigenf unc tion. 

Zener and Slater (2) have shown how one can write down an 
approximate eigenfunction for an electron in any atom for which 
the four quantum numbers are given. For our purpose it will not 
be necessary to write them down. But evidently if one specifies 
the quantum numbers and the atom to which each electron be- 
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longs, an enterprising person can write down the eigenfunction for 
the system as long as the atoms are far apart. It will be merely 
the product of the separate eigenfunctions for each electron. 
But, even if one keeps the same set of quantum numbers, still by 
interchanging the positions of the electrons we get many different 
eigenfunctions, all corresponding to the same energy and all 
equally good solutions of Schrodinger’s equation. Now, wher- 
ever two electronic eigenfunctions overlap, either inside a single 
atom or between two atoms, the electrons trade around in every 
possible way not in violation of the Pauli exclusion principle. 
This is a phenomenon we neglected entirely when we considered 
the coulombic binding and prepares us to expect a modified bind- 
ing energy. If the 
electrons are simultaneously in the same neighborhood oftener 
than they would be if each moved at  random, there is increased 
attraction. If they occupy the same neighborhood less fre- 
quently than they would if moving at  random, we get a dimin- 
ished binding. This additional potential energy is called the 
interchange integral. In  order for two equivalent electrons to 
occupy the same neighborhood, they must, by the Pauli exclusion 
principle, have oppositely directed spins, since the other part of 
their eigenfunctions are identical. Thus for oppositely directed 
spins the interchange integral increases the binding, since the 
binding electrons can spend more of their time between the 
atoms. 

Heitler and London (3) first discovered the interchange binding 
for molecules and made the calculation for Hz. 

This trading may be done in different ways. 

ACTIVATION ENERGY FOR REACTIONS IN WHICH THREE ELECTRONS 
CHANGE PARTKERS 

If two monovalent atoms have the spins of their electrons oppo- 
sitely directed (antiparallel), giving an attractive interchange 
binding (the coulombic attraction does not depend on the direc- 
tion of the spin), it is evident that a third atom cannot possibly 
have its spin antiparallel to the other two. The third atom will be 
repelled by a t  least one of the other atoms. London (4), using 
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perturbation theory, gave the following approximate expression 
for the energy of three monovalent atoms: 

E3 = A + B + C + (W(CY - PIz  + (a - 7)' + (a - r)')* (2) 

Figure 1 represents three monovalent atoms Y, X and 2 a t  the 
corners of a triangle. The quantities written on the connecting 
lines between pairs of atoms are the energies which would be 
required to separate the pair if the third atom were not present. 
The important point is that although the energy, Ea, is not the 
sum of the three bond energies, still it is given in terms of the 
bonds between atom pairs. The potential energy curve for 
many diatomic molecules can be constructed using well-known 

1 Z 
FIG. 1. THREE ATOMS AND THE POTENTIAL ENERGIES WHICH DETERMINE THE 

TOTAL POTENTIALS 

spectroscopic data in a Morse (5) curve and these may be used for 
evaluating the binding between atom pairs. To calculate E3, it is 
not enough, however, to know A + a, B + p and C + y, which 
the Morse curves give us. In addition we must know A ,  B and 
C, the coulombic part of the binding energy. CY, ,8 and y are the 
interchange binding. In the case of hydrogen the coulombic part 
of the binding energy is approximately 10 per cent of the total, 
as shown by Suguira's (6) evaluation of the integrals of Heitler 
and London (3). 

Farkas (7 )  found for the reaction 
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an activation energy of from 4 to 11 kg-cal. Eyring and Polanyi 
(8) using equation 3 with a Morse curve for Hz found 13 kg-cal. 
If a different Morse curve is used (Le., one which fits on to the 
theoretical curve at great distances, where the theoretical curve is 
known to be correct) the calculated activation energy falls inside 
the experimental limits. 

We will now consider how such a calculation of the activation 
energy is made. The problem is to find how an H atom can be 

FIG. 2. PO5ITION OF THREE ATOMS FOR THE POTENTIAL SURFACE GIVEN I N  
FIQURE 3 

Distance between atoms YZ in Hngstrsrns 

FIQ. 3. ENERGY CONTOURS FOR THREE HYDROQEN ATOMS I N  A LINE 

brought so near an Hz molecule that the central atom, being as 
near one neighbor as the other, is as apt to take the new partner 
as to retain the old one. From equation 2 and a potential energy 
curve for Hz one can calculate the potential for every configuration 
so that the problem is certainly soluble. An examination of E8 
shows that less energy will be required if the three atoms are kept 
on a straight line; so we need not consider other configurations. 
If the distances r1 and r2 of figure 2 be plotted at 120" to each 
other and the energy, Ea, be indicated by contour lines we get 
figure 3. It was shown in the paper last quoted that a ball made 
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to roll on the surface corresponding to figure 3 will show exactly 
how r1 and r2 will change in the HB complex. This surface, then, 
solves our problem. The surface resembles two long valleys 
stretching away to infinity parallel to the axes. As one travels up 
either valley toward the origin one climbs slowly to 13 kg-cal. 
Here one passes into a shallow basin 1.6 kg-cal. deep. Passing 
through this basin one reaches again, in the symmetrical position, 
a gap in the basin rim 13 kg-cal. high and then descends slowly 
into the second valley. The valleys on their sides nearest the 
borders of the map rise steeply, corresponding to the repulsion 
between two hydrogen atoms forced closer together than .76 
Angstroms. On the inner side the valleys rise less steeply toward 
a high central plateau, 101.5 kg-cal. high, corresponding to disso- 
ciation of the Ha complex into three separate H atoms. Sea level, 
or 0 kg-cal., corresponds to the lowest attainable energy for an 
H2 molecule with the third H atom infinitely far away. The sea 
itself descends to a maximum depth of 6.1 kg-cal. This is poten- 
tial energy corresponding to the half quantum of vibration of the 
H2 molecule which it cannot give up as long as it remains an H2 
molecule. It does become available in reducing the activation 
energy in reaction 3, however. Reaction 3 is represented on our 
contour map by the broken line with arrows proceeding along the 
bottom of one valley through the basin into the adjoining valley, 
i.e., from large r1 to large r2.  The activation energy is, of course, 
the least energy which permits passage from one valley to the 
other. A ball rolling along the valley so that r1 increases and r2 
remains constant, represents pure translational energy of separa- 
tion of an H2 molecule from an H atom. A periodic motion 
back and forth across the valley corresponds to vibration of the 
H2 molecule. The significance of these motions is immediately 
understood by considering what the corresponding changes in r1 
and r2 signify from figure 2. To find out whether reaction 3 will 
require its activation energy in the form of vibration or transla- 
tion, a ball is placed in the gap between the basin and the valley 
and allowed to descend into the valley. It is then determined how 
much of the kinetic energy is motion along the axis of the valley 
and how much is transverse to it. This will determine how the 
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ball must be sent in the reverse direction so that it will just reach 
the top of the pass without any excess energy. For the para- 
hydrogen reaction only translational energy is used. This is clear 
when it is remembered that vibrational energy can be absorbed 
only in lumps of around 12 kg-cal., whereas the surface shows 
that not more than one or two of the 13 kg-cal. for activation can 
be efficiently used in the form of vibrational energy. 

A ball projected in the most efficient way from one valley 
passes very slowly through the first pass and into the shallow 
basin where it zigzags back and forth before finding its way out 
through the second gap. The three atoms thus form a quasi- 
molecule or sticky collision. If during the time the ball is in the 
basin a collision from the outside carries off its energy, it must 
remain in the basin until it recovers the energy. If the basin 
were 25 kg-cal. instead of 1.6 kg-cal. deep, H3 would be stable a t  
room temperatures and the recovery of the energy with the subse- 
quent escape of the ball would constitute a unimolecular decompo- 
si tion. 

It is instructive to consider as simple an example as Ha, since 
Volmer (9) and his collaborators have demonstrated that the 
decomposition of nitrous oxide is unimolecular with a peculiarly 
low specific reaction rate 

k = 1010 (4) 

Ordinarily the proportionality factor is of the order 10'3, as 
Polanyi and Wigner (10) were able to show should be the case for 
a somewhat specialized molecule with many atoms. Their factor 
1013 is the most rapid characteristic vibration frequency for the 
molecule. Their method, which depended on there being many 
atoms and many characteristic vibration frequencies, is not 
accurate for so simple a molecule as N20, but it is just these simple 
molecules for which it is possible to construct potential energy 
surfaces and roll the ball on them. For a unimolecular reaction 
the activation energy E of equation 4 is the depth of the potential 
energy basin measured from the bottom to the lowest point in the 
rim of the basin through which the ball can escape to the outside. 
The half quanta of vibration must be allowed for. For the ball to 

E 
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escape from the basin it not only must have the energy E but it 
must be vibrating in a direction to escape through the low point 
or points in the rim. In  general, when it first gets the energy E 
it will not be doing this. Depending on the shape of the surface, 
it may require one or many vibrations before it makes its escape. 
It is thus easy to see that this life of an activated molecule will be 
a specific thing for each molecule. For the specific reaction rate 
constant k we should write an expression analogous to 

since we are supposing the energy distributed among all the 
internal degrees of freedom. 8 is the average reciprocal of the 
time required for the ball to escape from the basin after it has at 
least the energy E (depth of the basin) distributed through its n 
squared terms. One interesting proposition follows immediately 
from this picture of a unimolecular decomposition. The ball 
when it has the smallest E enabling it to escape can escape only 
at the very lowest points of the rim of the basin. As the energy is 
increased it can escape over a larger fraction of the rim. We can 
then state the proposition: S increases with the excess of E over 
the minimum activation energy required for decomposition. For 
small enough excess of E over the minimum required, this propor- 
tionality will of course be linear. Rice and Ramsperger ( l la)  and 
Kassel ( l lb )  were led to this assumption to explain observed 
unimolecular reaction rates. 

The rate of decomposition of activated N20 molecules, approxi- 
mately 1/1000th the usual rate, differs more from Polanyi and 
Wigner’s theoretical result than is to be expected from mechanical 
considerations, so that one naturally looks for a non-mechanical 
reason. Wigner (12) has pointed out that when the sum of the 
electron spins of the resultant molecules in a reaction cannot be 
added up algebraically to equal a possible algebraic sum of the 
spins of the initial molecules, the chance of reaction is small 
(roughly 1/1000th the normal rate) even for molecules which have 
the necessary activation energy. Normal N20 is in a singlet state, 

- 
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Le., has no resultant spin. The resultant Nz 
is certainly in a singlet state, whereas the 0 atom is certainly in a 
triplet state, giving a total spin of one unit for the products. 
Thus the initial and final total spins are different, and we expect an 
unusually slow reaction. This slowness of reactions because of 
changes in the total multiplicity applies also to the following 
cases if reactants and products are in the normal state: CO + 0 = 

CO,; Hz + 0 = H,O; H2 + O2 = H20z. This is the reason why 
O2 with its unpaired electrons does not behave more often like a 
free radical. 

The perturbation theory as ordinarily formulated (16) neglects 
the possibility of a change in multiplicity. When magnetic 
forces are considered this probability is found to be small, but not 
zero. The analogous forbidden transitions in spectra give us a 
way of estimating this probability of change in multiplicity (13). 

It is helpful in discussing potential energy surfaces to use a 
terminology adopted earlier (8). We shall call p activation 
energy that energy which one calculates from equation 2 if it be 
assumed that all the binding energy is interchange ( A  = B = C = 
0) and also that the bond, A + a, between the outer atoms of the 
three on a line is zero. The p activation energy for reaction 3 is 
14.4 kg-cal. The agreement of p activation energy with the acti- 
vation energy calculated from the unmodified equation 2 is 
accidental. The increase in the p activation energy when CY is not 
neglected is called the Q! activation energy. The CY activation 
energy is sometimes small but is always positive. The coulombic 
activation energy is the difference between the sum of CY and p 
activation energy and that calculated from equation 2. It is due 
to the coulombic forces and is always negative. In calculating 
activation energy we figure not from the lowest part of the surface 
but from a half quantum higher. Thus we assume the activation 
energy is lessened by the half quantum. This is, in general, not 
quite true, since the half quanta of the activated state aregenerally 
not quite negligible. 

If one calculates the P activation energy for reaction 3 and 
constructs the surface it is found that an HB complex has a lower 
energy by 10 kg-cal. than Hz + H and that an activation of 24 

It is diamagnetic. 
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kg-cal. would be required for the decomposition of the HI, making 
it a stable compound at room temperature. This is of course not 
true, and it shows that equation 2 must be used to get reasonable 
results. London, in the example he gave, considered only p 
activation energy. 

Three similar halogen atoms actually do have a small CY activa- 
tion energy for reactions of the type Xz + X = X + Xz. If the 
coulombic binding is as much as 10 per cent of the total, as it is in 
Hz, then complexes of the type F3, CL, BrB and I3 are more stable 
at room temperature than the diatomic molecule and an atom. 
Rollefson and Eyring (14) have pointed out the significance of 
such complexes in photochemical reactions. The assumption that 
a reaction will be excessively slow because it involves three mole- 
cules is certainly open to question, in view of the stickiness of 
many collisions. 

It is interesting to consider an extension of Eyring and Polanyi’s 
treatment of the reaction 

They found that if the three atoms collided on a line the activation 
energy was 13 kg-cal.; for collisions not on a line the activation 
energy is of course higher. Now the fraction of collisions exactly 
on a line is negligible, so that one must really include with the 
appropriate probability factor collisions in which the approaching 
atom makes an angle with the molecular axis. By doing this one 
can obtain not only the activation energy but the absolute rate of 
reaction 3. 

Pelzer and Wigner (15) by doing this have found a reaction rate 
based entirely on theory in excellent agreement with Farkas’ 
measurements. They also consider the probability of electron 
transitions being involved in this reaction and conclude that the 
reaction must proceed by the adiabatic process previously assumed. 
Thus any modifications in treating this reaction must be in the 
technique of calculating the activation energy, and not in the 
conception that it is an adiabatic process. 
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ACTIVATION ENERGY FOR REACTIONS IN WHICH FOUR 
ELECTRONS CHANGE PARTNERS 

The equation for the potential energy for any configuration of 
four monovalent atoms is 

E4 AI + Az + BI + Bz + Ci + CZ + [1/2((a1 + - A - 8d2+  

(a1 + az - 71 - yz)z + tal + 62 - 7 1  - r2)z)If (4) 

The significance of these quantities is apparent from a considera- 
tion of figure 4, where the binding which would exist between 

FIG. 4. FOUR ATOMS AND TEE POTENTIAL ENERGIES WHICH DETERMINE THE 
TOTAL POTENTIAL 

atom pairs in the absence of other atoms is written along the con- 
necting lines and is a function of this distance only if the electrons 
are in S states. For directed valences the eigenfunctions will 
point in a direction to make Eq as large numerically as possible. 
It was stated in an earlier paper that equations 2 and 4 could be 
obtained by using Slater’s method for complex atoms. Zener, 
Gibson and the author did not publish these results, but the 
reader may be referred to the recent comprehensive treatment of 
molecular problems by Slater (16), which includes these two cases 
along with many other interesting results important to chemists. 
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The activation energy for six reactions of the type 

wx + YZ = XY + wz ( 5 )  

have been calculated (17) and compared with the activation 
energy for the same net reaction where the intermediate reactions 
involved atoms. It is found, in agreement with experiment, that 
reactions of halogens with hydrogen will proceed by way of the 
atoms, except in the case of Iz which will involve molecules only. 
It is also shown that the homogeneous change of para-hydrogen 
to the equilibrium mixture will definitely go by way of the atoms 
as Farkas showed. 

STERIC HINDRANCE AND KINETIC THEORY DIAMETERS 

Some of the reactions which invove the breaking of two bonds 
and the formation of two new ones (essentially a reaction involv- 
ing but four electrons) involve forcing other atoms to approach 
each other to distances at which there is repulsion. This is steric 
hindrance, and the increase in the activation energy is readily 
calculated by using the following consequence of Slater’s method 
for molecules. The added repulsive potential is the sum of one- 
half of the interchange energy between all possible pairs of elec- 
trons, one from each of the molecules (other than the four in- 
volved in the reaction proper). The interchange energy, as 
before, is estimated from the appropriate Morse curves. The 
accompanying coulombic potentials always act to lessen the repul- 
sion. These two quantities added to equation 4 enable one to 
calculate the activation energy for a reaction involving steric 
hindrance. Where there are permanent dipoles, the potential 
arising from this source must also be included. The mutual 
polarization of molecules, or van der Waals’ forces, gives rise to a 
further small attractive potential varying inversely as the 6th 
power of the distance. London (18) and Slater and Kirkwood 
(19) have each given relationships for calculating this quantity, 
so that it is now possible to calculate the activation energy in the 
first approximation for reactions involving three and four elec- 
trons, taking account of the steric hindrance due to atoms not 
themselves involved in the reaction. Such a calculation involves 
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a detailed knowledge of the position of the atoms in the molecule 
supplied in many cases by x-ray data. Steric effects due to per- 
manent dipoles must be considered in addition. 

Ordinary collisions are of course simply a special case of steric 
hindrance, and one for which the distance of approach should be 
calculable by just the methods outlined above. In fact, Slater 
and Kirkwood (19) have calculated the constants of van der 
Waals’ equation for helium with excellent agreement with experi- 
ment, Kirkwood and Keyes (20) have investigated other physi- 

01s t o n  c e. 
FIQ. 5. POTENTIAL CURVES BETWEEN Two COLLIDINQ MOLECULES 

cal properties, also with satisfactory agreement with experiment. 
The collision process of two Hz molecules has likewise been calcu- 
lated theoretically (21). The agreement with experiment is good. 
Figure 5 shows schematically the potential energy between two 
molecules a t  a distance approximately that of their kinetic theory 
diameters. 

The potential energy depends, of course, not only on the dis- 
tance between the center of gravity of the two molecules, but on the 
relative orientation of their axes. Two colliding Hz molecules a t  
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these large distances behave almost like two spheres. Curve I 
for Hz was calculated using equation 4. If equation 4 is expanded 
by the binomial theorem for configurations where cyl, cy2, AI, 
and AP are large and the other quantities small we get 

We have already stated the manner in which equation 6 is to be 
modified for more complicated molecules colliding. During an 
ordinary collision cy1 + a2 stays practically constant as do the 
attractive potentials AI and Az  in Q. The other terms increase 
exponentially with the distance as the two molecules approach, 
giving us a net repulsion indicated by curve I in figure 5.  The 
individual terms are evaluated from potential energy curves for 
atom pairs. Thus, no matter how complicated the colliding mole- 
cules, to construct curve I one needs only to know the relative 
position of atoms in the separate molecules and the potential 
energy curve for pairs of atoms, one from each molecule. The 
potential energy will ordinarily depend on the relative orientations 
of the molecules as well as the distances between centers of 
gravity. The repulsive potential between molecules (without 
permanent dipoles) arises entirely from interchange forces which 
would give attraction if the electron spins were antiparallel. The 
van der Waals’ forces indicated by curve I11 are calculable using 
the relationships suggested by London (18) or by Slater and Kirk- 
wood (19). The sum of the two curves gives us 11, which repre- 
sents the actual potential energy between two molecules plotted 
against the distance between them (for a definite relative orienta- 
tion). It is interesting to consider how much information is given 
by such a curve. We shall leave out of account for the moment 
the difference in the energies with which pairs of molecules collide 
at the same temperature. Two molecules then approach with an 
energy RT so that the abscissa a t  A is the kinetic theory diameter. 
The decrease of the diameter with temperature depends on the 
slope a t  A and can be compared with the Sutherland constant. 
The abscissa at  B is the diameter of the molecules in the liquid 
state a t  zero degrees. The ordinate at  B is the heat of sublima- 
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tion at  zero degrees. As the temperature rises, molecules of the 
liquid vibrate about the minimum. This reduces the heat of sub- 
limation and also causes an expansion of the liquid. The expan- 
sion arises from the unsymmetrical nature of the curve, since the 
vibrating molecules spend more time traversing the less steep 
portions of the curve. Thus the coefficient of expansion meas- 
ures the dissymmetry of curve 11. The slope of I1 to the left of 
B determines the compressibility. The curvature at  the mini- 
mum determines the frequency of vibration which enters into the 
specific heat of the liquid. Thus we see that we have these 
additional experimental checks on the accuracy of our calculation 
of the valence forces which determine activation energy. 

An obvious way to calculate the repulsive potential at  kinetic 
theory distances is to consider that some definite fraction of the 
Morse potential curve gives the interchange binding. It is too 
much to expect that such a procedure would lead to accurate 
results, although the results are generally not greatly in error. 
The Morse potential energy for Hz does not fall off as rapidly with 
distance between the H atoms as the theoretical curve. A con- 
sideration of the way in which the potential energy of other 
diatomic molecules, calculated from Slater’s eigenfunctions, falls 
off with distance indicates that this may be a fairly general 
difficulty of Morse curves. This defect leads to activation 
energies and kinetic theory diameters a little bit too large. The 
whole question should be more carefully considered. 

THE RATIO OF INTERCHAKGE TO COULOMBIC BINDING 

In previous calculations of activation energy the interchange 
binding has been taken as 10 per cent of the total binding, the 
value calculated for Hz. Rosen (22) has recently calculated the 
potential energy binding for Naz using Slater eigenfunctions. 
He finds very good agreement with experiment for the heat of dis- 
sociation, distance between atoms and the vibration frequency of 
the lowest state. His value for the ratio of coulombic to total 
binding in the neighborhood of the minimum is 28.3 per cent. 
Bartlet and Furry (23) have carried out a similar calculation 
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for Liz, which is likewise in excellent agreement with experi- 
ment. Their value for the ratio of coulombic to total bind- 
ing is 22 per cent. This percentage is constant to within 1 per 
cent from the minimum out to distances for which the binding 
energy has dropped to one-fifth of its greatest value. This is 
additional evidence for the assumption that the ratio of coulombic 
to interchange binding is approximately independent of the dis- 
tance between atoms in the region important for calculating 
activation energies. However, it also shows that this ratio 
depends very much on the molecule. We need, therefore, some 
criterion for estimating when the coulombic fractions will be 
large. 

Molecules (independent of the valences of the component 
atoms) which solidify to give molecular crystals do so because the 
interchange potentials preponderate largely over the coulombic 
ones. On the other hand the formation of atomic crystals from 
atoms having a valence of two or less indicates that interchange 
binding, associated with antiparallel spins, is of secondary impor- 
tance to the coulombic binding. This becomes clear when it is 
realized that two antiparallel electrons repel all others, so that only 
Then the pair is relatively isolated will the total interchange bind- 
ing help to stabilize the crystal. Since the alkalis form atomic 
crystals, we expect them to have the coulombic part of the bond 
relatively large. On the other hand, hydrogen and the halogens 
form molecular crystals and so have a relatively smaller fraction of 
coulombic binding. This is the same conclusion to which one is 
led by considering the activation energies. Of course the way 
molecules crystallize is a good indication of how they will behave 
upon colliding in the gas phase. In particular it indicates how 
much energy is required to make them forget who their former 
partner was. In a recent paper Cremer and Polanyi (24) con- 
sider certain properties of crystals, including their vibration fre- 
quencies, in relation to the interchange binding. 

With directed valence the relations for calculating the activa- 
tion energy are the same as for s electrons except that the indi- 
vidual values for bonds depend on the angle e between the line 
joining the atoms and the axes of the eigenfunctions. The 
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bond, D, between a p and s electron depends on the angle, e, 
between the atoms in the following way 

D = A cos2 e + kA sin2 e. 

Slater (16) estimated k for the OH bond to be roughly .2. k may 
be experimentally determined from the transverse vibration fre- 
quency associated with directed valences. 

SUMMARY 

It is perhaps well to summarize the general point of view. 
Most of the problems of compound formation (valence) and 
activation energy may be solved by constructing a potential 
energy surface the low places of which correspond to compounds 
stable at ordinary temperatures, provided the barrier separating 
one minimum from a still lower one is greater than about 20 kg- 
cal. The height of the barrier is of course the activation energy. 
It is then only a problem in mechanics to find how a ball will roll 
on this surface. The essence of the theory of adiabatic reaction 
is that the specification of the relative position of the atoms 
suffices to determine the energy, the idea being that the electrons 
because of their more rapid motion adjust to the configuration of 
lowest energy. The fact that light is sometimes emitted shows 
that this is not always true. A. system containing excited atoms 
is to be thought of as being on a higher potential energy surface. 
The transition from the higher to the lower surface appears as 
kinetic energy in some direction which may suffice to carry the 
ball (representing the system) over a potential barrier. This con- 
stitutes a chemical reaction. 

Such a visualization of compounds and reactions would not 
be particularly helpful if we were unable to construct the potential 
energy surfaces at least with some approximation. The relative 
heights of the potential minima are the material which thermo- 
dynamics gives us in the form of heats of reaction. The position of 
these minima in terms of the distances between atoms we get from 
x-ray data and from the illuminating discussions on directed 
valence by Pauling (25) and by Slater (26). From the spectro- 
scopic data for diatomic molecules we learn the binding energy 
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between atom pairs as a function of distance, and finally from 
perturbation theory we may calculate the energy of complex con- 
figurations in terms of the energy between atom pairs, thus enab- 
ling us to explore the barriers between minima in our potential 
surface. 

Such a method, which seems general in its applicability, has cer- 
tain limitations. First, we are using first order perturbation 
theory, which applied to the H2 molecule gave a binding energy 
only three-fourths of the experimental one. However, i t  has 
recently been applied to Na2 and Liz with results within a few 
per cent of the experimental value. Also, the results found for H, 
and other cases seem to be surprisingly near the experimental 
values. Second, besides knowing the potential curve for a dia- 
tomic molecule we must know what fraction of it is coulombic. 
This is known only in three cases by direct calculation. There are 
many ways of estimating this quantity so that this cannot be con- 
sidered a great difficulty. Third, the labor of applying a pertur- 
bation method is sometimes great. When only three or four 
electrons change partners in a reaction, the binding energy for any 
configuration of the atoms is readily found by methods already 
described. Steric hindrance, consequent upon non-reacting 
electrons being forced to approach each other, is also calculable 
without serious difficulty. When five or six electrons change 
partners during the reaction, the energy of each configuration can 
be found by solving a fifth degree equation. Kimball and the 
author have done this for certain interesting cases. The calcula- 
tion, is not difficult but tedious. If a reaction involves seven or 
eight electrons changing partners simultaneously, an equation of 
the fourteenth degree for each configuration must be solved. 
Although it is entirely possible to find the roots of such an equa- 
tion, it is certainly not practical. Fourth, activation energies 
arising from other sources than spin valence, as for example, Z- 
valences or the inability of charged ions to approach each other 
must be considered separately. Fifth, Morse curves must be 
regarded as a temporary expedient to be supplanted by better 
potential energy curves for atom pairs as they become available. 
In spite of these limitations we may anticipate that a much more 
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accurate understanding of chemical reaction will follow from the 
application of perturbation theory and that it will point the way 
to something better. The conception of spin valence bonds going 
gradually (adiabatically) into new spin bonds without the system 
ever having sufficient energy to break the bonds outright seems 
established for certain cases already considered. 

The author wishes particularly to thank Professor J. C. Slater 
for many helpful discussions. 

REFERENCES 

(1) RICE: Phys. Rev. 34, 1451 (1929). 
(2) ZENER: Phys. Rev. 36,51 (1930). 

SLATER: Phys. Rev. 36,57 (1930). 
(3) HEITLER AND LONDON: Z. physik. 44,455 (1927). 
(4) LONDON: Z. Elektrochem. 36, 552 (1929); Sommerfeld Festschrift, p. 104, S. 

( 5 )  MORSE: Phys. Rev.34,57 (1929). 
(6) SUQUIRA: Z. Physik. 45, 484 (1927). 
(7) FARKAS: Z. physik. Chem. 10B, 419 (1930). 
(8) EYRINQ AND POLANYI: Z. physik. Chem. l2B, 279 (1931). 
(9) VOLMER AND KUMMEROW: Z. physik. Chem. 9B, 141 (1930). 

Hirzel. 

NAQASAKO AND VOLNER: Z. physik. Chem. 10,414 (1930). 
VOLMER: Z. physik. Chem. 13, 299 (1931). 

(10) POLANYI AND WIGNER: Z. physik. Chem. 139A, Haber Band, p. 439 (1928). 
( l l a )  RICE AND RAMSPERQER: J. Am. Chem. SOC. 49,1617 (1927). 
(I lb) KASSEL: J. Phys. Chem. 32,225 (1928). 
(12) WIQNER: Nachr. Ges. Wiss. Gottingen, p. 375 (1927). 
(13) BEUTLER AND EISENSCHIMNEL: Z. physik. Chem. 10,89 (1930). 

(14) ROLLEFSON AND EYRINQ: J. Am. Chem. SOC. 64,170 (1932). 
(15) PELZER AND WIQNER: Z. physik. Chem., 16B, in press (1932). 
(16) SLATER: Phys. Rev. 38, 1109 (1931). 
(17) EYRINQ: J. Am. Chem. SOC. 63,2537 (1931). 
(18) LONDON: Z. physik. Chem. 11B, 222 (1930). 
(19) SLATER AND KIRKWOOD: Phys. Rev. 37,682 (1931). 
(20) KIRKWOOD AND KEYES: Phys. Rev. 37,832 (1931) 
(21) EYRINQ AND SLATER: J. Am. Chem. SOC., in press. 
(22) ROSEN: Phys. Rev. 38,255 (1931). 
(23) BARTLET AND FURRY: Phys. Rev. 37, 1712 (1931), also a private com- 

(24) CREMER AND POLANYI: Z. physik. Chem. [A], Bodenstein Festband, p. 770 

(25) PAULINQ: J. Am. Chem. SOC. 63,1367 (1931); 63,3225 (1931). 
(26) SLATER: Phys. Rev. 37,481 (1931). 

BATES: J. Am. Chem. SOC. 64,569 (1932). 

munication. 

(1931). 


