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A discussion of the relation o i  statistical mechanics to the prob- 
lems of the kinetics of reactions in liquid solutions seems very 
timely. By bringing together what has been accomplished and 
by showing as clearly as possible which conclusions come from the 
theory and which from extraneous assumptions, the author hopes 
to smooth somewhat the v;ay for further advances. In his opin- 
ion the three great advances in the theory of reaction rates in 
liquid solutions have been the classical law of mass action, the 
theory of the temperature coeEcients of reaction rates, and the 
theory of Bronsted (1). The first two are discussed in every 
textbook of physical chemistry and are so familiar that no refer- 
ences need be given. For theoretical purposes the first may be 
considered as a special case of the third, and the second should 
be considered as a problem in gaseous reactions. So we shall 
be concerned largely with the relation of statistical mechanics 
to Bronsted's theory. 

Before applying statistical mechanics 11-e must picture the 
conditions necessary for a chemical reaction. We may say that 
molecules react if they approach within a certain distance, with 
a certain relative orientation, and with a certain amount of energy 
distributed in a certain way (or with a definite deformation of the 
molecules). Each of these conditions should be considercd as 
extending over a small range of the corresponding coordin,-,tes. 
I t  is possible that the molecules must remain in this state during 
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a very short but finite time necessary for reaction. There is also 
a possibility that there are two or more states, quite different in 
some respects, which lead to the same reaction. These conditions 
seem general enough to cover all cases. If the approach of the 
molecules follows the reception of energy and the deformation 
and orientation, there is a “reaction on collision”; if the approach 
precedes any of the other steps, there is a “preliminary complex 
formation.” Much has been written (2, 3) on the question 
whether this reacting state or complex is to be regarded as a “physi- 
cal constellation” or as a “chemical compound.” The distinction 
seems to the author to be quite unimportant and dependent 
entirely upon the language with which we define a chemical com- 
pound. It seems equally unimportant n-hether the rate be cal- 
culated from the concentration of reacting complexes (2) or 
from the number of collisions with the necessary orientation and 
energy multiplied by a factor for the duration of a collision (4). 

We know that for reactions slow enough to give measurable 
rates the reacting state is a very improbable one. We must as- 
sume that it differs only slightly from other states whose total 
probability is very much greater than that of the reacting complex 
and which are in statistical equilibrium. We may then treat the 
reacting complex as though it also were in equilibrium. This is 
the one general assumption which might be questioned. 

THE THEORY OF BROKSTED 

The above picture of a reacting complex seems to the author 
identical with the “critical complex” of Bronsted (l), and we may 
derive his theory directly from this picture and the postulate 
that statistical equilibrium and thermodynamic equilibrium are 
the same. The theory states that the rate of reaction a t  con- 
stant temperature is proportional to the product of the activities 
of the reactants divided by the activity coefficient of the critical 
complex. 

A + B --.f (XI ---f D + E 
We will take as example the simple reaction 
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where C means concentration, f activity coefficient, and the sub- 
scripts refer to the substances in the reaction above. If there be 
more than one reacting complex which leads to the same reaction, 
they may all be grouped as a single critical complex. This might 
complicate the calculation of fx, but i t  should give no other 
difficulty. 

Bronsted (lb) further concludes that the constant K may be 
divided into two factors, thus, 

K = K,K, 

the first of which depends only on the reaction and the sec- 
ond only on the medium. It seems to the author impossible that 
there should be any constant -which is the same for all reactions 
which is not also the same for all media. As illustration let us 
consider a catalyzed reaction. It is only a matter of convenience, 
although one of enormous convenience, that we consider the 
catalyst as one of the reactants. Equation 1 must be equally true 
if the catalyst is not included, provided that the activity 
coeficient fx is properly expressed. One might, of course, prefer 
to express the catalytic effect in K,. However, rve h o w  that 
catalytic effects, although the same for a reversible reaction in 
both directions, are not the same for all reactions. Therefore, 
it seems much more logical to consider K a function only of the 
reaction and the temperature, and to ascribe all changes with 
changing medium tofx. This is always possible if X is sufficiently 
specified. From the fact that  our definition of activity coeffi- 
cient demands a different standard state for each temperature, 
the greatest part of the temperature variation must be ascribed 
to K.  This is an advantage and, for theoretical discussions, the 
standard state should be chosen as that of an infinitely dilute 
gas. Thus we may consider temperature coefficients as outside 
the scope of the theory of liquid solutions. 

APPLICATION O F  STATISTICAL MECHSNICS 

We have seen that Bronsted’s theory follows from our assump- 
tions without any use of statistical mechanics other than the 
general postulate that statistical equilibrium implies thermody- 
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namic equilibrium. A derivation of Bronsted’s equation from 
statistical mechanics, such as that of Bjerrum (2), seems quite 
unnecessary. There is, however, a great opportunity for the 
application of statistical mechanics to our problem. Thermo- 
dynamics tells us nothing of the value of fx  ; the activity coefficient 
of a complex that disappears immediately it is formed can cer- 
tainly never be measured. There remain as methods of deter- 
mining it only empirical generalization and statistical mechanics. 
So far the application has been limited to those cases in which 
the ratio of the number of critical complexes to the total number 
of complexes with the same distance of approach may be regarded 
as independent of the medium, that is, where the orientation, the 
quantity of energy, and the distribution of it within the complex 
are independent of the medium. The application has been fur- 
ther limited to those cases in which the concentration of com- 
plexes with a given distance of approach may be calculated from 
the theories of Debye. 

Reactions between ions 
Bronsted himself computed the effect of dilute electrolytes on a 

large number of reactions with the assumption, first reached by 
empirical generalization and then from the Debye-Huckel theory 
( 5 ) ,  that the activity coefficient in dilute electrolyte solutions 
depends only on the valence type. The theoretical expression 
for very dilute solutions is 

where z is the valence, t the protonic charge, D the dielectric 
constant, 12 Boltzmann’s constant, T the absolute temperature, 
and K has its usual significance in the Debye theories. We see 
immediately that the addition of an electrolyte increases the rate 
of reaction if the reactants have valences of the same sign, de- 
creases the rate if they have opposite signs, and has no effect pro- 
portional to the square root of the concentration if either reactant 
has the valence zero. It may be noted that Bronsted’s conclusion 
that the activity coefficient of the critical complex depends only 
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on its valence in very dilute solutions is a t  variance with the con- 
clusion of Bjerrum (2,6) that  the activity coefficient of a "Zwitter- 
ion" or of a polyvalent ion approaches the product of the activity 
coefficients of the ions of which i t  is composed as the distance of 
separation increases. Detailed calculations by Kirkwood and 
Scatchard (7), however, agree with Bronsted that the term pro- 
portional to the square root of the concentration depends only on 
the valence, provided that the distance of separation is finite and 
the same as in the standard state. 

For our present purposes we may follow the much simpler pro- 
cedure of Christiansen (4) and calculate the concentration of 
the complex directly from equations given by Debye and Huckel 
( 5 ) .  This concentration is proportional to the bulk concentra- 
tion of A molecules multiplied by the average concentration of B 
molecules at a distance r from an A molecule, where r is the dis- 
tance of approach characteristic of the complex. According to 
Debye and Huckel this is 

I $7 zB C Z h Z B  e- KT eKa 

Cx = K"CACB e- kT = KffCACB e- DkT r 1 + K a  (3) 

where $? is the mean electrostatic potential a t  the distance r from 
an A ion, and a is the closest distance of approach of the other 
ions to an A ion. When K = 0, equation 3 reduces to 

From this it follows that 
- K T  KU 

( 5 )  
e -- In - In- =In- - - -  fA fB CX 

fx C ACB CiCi DkTr 1 + Ka 

To compare with Bronsted's result we expand in series 
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Christiansen, who also obtains equation 7 as the limiting law, 

from equation 3. It is hard to justify eKa omits the factor - 
1 + K a  

the neglect of KU when KT is considered, for the distance to which 
two ions must approach in order to react must be of the same 
order of magnitude as, and is probably not many per cent differ- 
ent from, the closest distance of approach of the ions. We should 
consider here the criticism of Gross (8), namely, that this method 
must be wrong in principle because if the sizes of the two ions 
are not the same the answer for more concentrated solutions de- 
pends upon which ion is chosen as the central one. This would be 
obvious from equations 5 or 6 if a were different for the two ions. 
However, when all the ions in the solution do not have the same 
size there is, strictly speaking, no a for any ion (9), and the 
proper value must be in doubt by at least the difference between 
these two answers. Gross also criticizes this whole method of 
approach for a reaction between two ions, and claims that the 
averaging for the calculation of reaction rates must be different 
from that for activity coefficients. His criticism of the applica- 
tion of the Debye-Huckel theory to reaction rates may well be 
compared to Fowler’s (10) criticism of its application to activity 
coefficients with which Gross appears to disagree absolutely. 
Considering concentrations rather than potentials, it seems 
obvious that the rate of reaction depends upon the same average 
concentration of B ions around an A ion as does the activity 
coefficient. How accurately this average is given by the Debye- 
Huckel theory is a question into which we need not enter here. 

It is very probable that the forces of repulsion vary so rapidly 
with the distance that the ions may be regarded as perfectly rigid 
spheres which must touch in order to react, so that r may be taken 
equal to a. In  this case equation 5 reduces to 

which is the form that the author (11) used for less dilute solutions, 
deriving i t  through the assumption that the complex might also 
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be regarded as a spherical ion with the characteristic distance a. 
The assumption used in the present method is much more prob- 
able. It must be understood, of cours& that the applicability 
of the equations is limited to solutions so dilute that other devia- 
tions from the laws of ideal solutions may be neglected, including 
in these other deviations the Gronwall-LaMer correction for small 
size or large charge (12). 

We may consider the theory well established in so far as it 
concerns the term that is proportional to the square root of the 
concentration and that depends on no properties of the ions other 
than their valences. It is probable that any variation of the ratio 
of the number of critical complexes to that of all the complexes 
with the same distance of approach would depend upon forces of 
much shorter range than that between two ionic charges, and that 
such a variation would therefore not affect this term. It is only 
for this case of the effect of electrolytes on reactions between ions 
that the term proportional to the square root of the concentration 
is other than zero. For the higher terms the difficulties of all 
kinds increase: the variation of the average concentration at a 
given distance depends upon specific properties whose effect is 
more difficult to calculate; it  is less certain that any one of these 
is so important that the others may be neglected; and the chances 
are greater that  factors other than the distance may be effective. 
Therefore in all the cases that follow the answer is not only less 
sharp, i t  is also less certain. Nevertheless the answer is worth 
seeking. 

From equation 4 we may also obtain the effect of changing sol- 
vent on a reaction between two ions in so far as that effect is due to 
changing dielectric constant and in so far as the solvent may be 
treated as a homogeneous niedium of uniform dielectric constant. 
If the dielectric constant in the state in question is D, and in the 
standard state Do, 

If the two ions have the same sign, an increase in the dielectric 
constant increases the reaction rate; if they have opposite signs, 
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the rate decreases with increasing dielectric constant. 
may be regarded as rigid spheres of radius b, 

and 

If the ions 

r = b, -I- b, 

f k  fB ZAZB 2; 2; 
l n - : l n j A : l n f  - - * - * -  

b, -I- b , ' 2  b , ' 2  b, f X  

If the two ions have the same size the factor in the expression of 
the reaction rate is, neglecting its sign, the mean of the activity 
coefficients of the ions. 

Reaction between an i o n  and a non-electrolyte 
For the reaction between an ion and a non-electrolyte we cannot 

use the theory of Debye and MacAulay (13) which gives a fair 
approximation of the activity coefficient of the ion or of the non- 
electrolyte by treating all non-electrolytes as part of a homogene- 
ous medium of uniform dielectric constant. We may, however, 
follow Gross (8) and calculate the effect of adding electrolyte from 
Debye's second treatment of activity coefficients (14), a treat- 
ment which is limited to solutions very dilute both in ions and 
in non-electrolyte reactant. If we assume that the effect of an A 
ion disappears a t  a great distance from the ion, the activity of the 
non-electrolyte B is equal to its concentration a t  an infinite dis- 
tance c,, and the activity coefficient is the ratio C, /CB, where 
CB is, as before, the average concentration. By the Debye theory 
the concentration of B molecules at  a distance r from the ion is 

where N is the Avogadro number, and PB and aB are given2 by 
D = Do (1 - 6, CB) = Do - 6B C, (13) 

2 This equation differs somewhat from tha t  of Debye, in whose paper C is the 
mole fraction and not the volume concentration. The present form is somewhat 
simpler to  apply and extrapolates t o  +20 instead of -275 for the dielectric 
constant of ether. I t s  use makes no difference in the calculation of the salting 
out. 
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Since R is independent of the electrolyte concentration we may 
write 

The change in rate of a reaction between an ion and an uncharged 
molecule caused by the addition of an electrolyte is equal to the 
change in activity coefficient of the uncharged molecule. Debye's 
treatment gives an expression for l n f ~  which is a complicated 
function of the radius of the ion, Do and 6, but which is propor- 
tional to the salt concentration and is positive if the non-electro- 
lyte decreases the dielectric constant, negative if it increases it. 
This calculation of the effect on the reaction rate is probably only 
a first approximation even for that part of the effect which it pre- 
tends to represent. The assumption that the field strength 
around an  ion, and therefore R,  is independent of the electrolyte 
concentration is equivalent to the assumption that the activity 
coefficient of the complex is equal to that of the simple ion. 

We may also use this result of Debye to calculate the effect of 
changing solvent on the rate of a reaction between an ion and a 
neutral molecule when both the reactants are a t  very small con- 
centrations. In  this case the concentration of B at an infinite 
distance from an A ion may be taken as equal to the average con- 
centration, C, = CB, but R is not independent of the medium. 
From the first two equalities in equation 14 we obtain 

To use equation 15 we must know 6 as a function of D. If the 
dielectric constants are all additive, that is, if equation 13 holds 
over the whole range with all the solvents 

where VB is the molal volume of B. When D is less than 2nB, 
increasing the dielectric constant decreases the rate; for larger 
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values of D the rate increases with increasing dielectric constant. 
However, if it  is the reciprocals of the dielectric constants which 
are additive, 

and the rate always decreases with increasing dielectric constant, 
although less rapidly the larger the dielectric constant. If i t  is the 
polarizations which are additive, the relation is more complicated 
and depends upon the absolute value of DB as well as upon the 
ratio DB/D : 

When DB = 1, there is a minimum in the rate for D = 2 0 ~  as in 
equation 16; but as DB increases this minimum shifts very rapidly 
to higher D’s and is reached only at D = ~0 when DB = 2. For 
all values of DB that are probable in liquid solutions the rate 
always decreases with increasing dielectric constant. 

Although the effect of changing dielectric constant on the 
reaction rate in this case depends so much on the form of the func- 
tional relation of dielectric constant to concentration that we can- 
not generalize about it, the relation of 6 to D is measurable in any 
particular case and equation 15 may then be applied. This equa- 
tion is limited to the case of uniform dielectric constant and so 
applies to changes from one pure solvent to another, but not 
strictly to mixed solvents. From a qualitative study of the more 
general equations given by Debye (14), we should expect that 
small amounts of a substance that lowers the dielectric constant 
would have a smaller effect on the rate than that calculated by 
equation 15 from its effect on the dielectric constant, because 
the concentration around the ions would be less than the average 
concentration. Larger quantities should have more nearly the 
calculated effect. Similarly, small quantities of a substance that 
increases the dielectric constant should have a larger effect than 
calculated. If the difference in dielectric constant is large, the 
first additions should have a relatively enormous effect and might 



STATISTICAL MECHAXICS AND REACTION RATES 239 

practically inhibit the reaction, for most of them would congre- 
gate in the immediate neighborhood of the ions. The effect might 
in this case depend upon the ratio of the concentration of added 
molecules to that of the ions rather than upon the concentration 
of added molecules alone. 

Reaction between two uncharged molecules 
The effect of electrolytes on reactions between two uncharged 

molecules, in so far as it depends only on the distance of approach 
and in so far as the medium may be assumed to have a uniform 
dielectric constant, should be calculable by the method used by 
Debye (14) for the salting out effect, integrating over all the solu- 
tion the product of two concentrations rather than a single con- 
centration. We can say offhand that the rate of a reaction be- 
tween two molecules both of which are salted out should be 
increased, and roughly as the mean of their activity coefficients; 
if one is salted out and the other salted in, the rate of reaction 
should decrease; if both are salted in, the effect of the orientation 
around the ion should be important. It might enormously in- 
crease the increased rate due to the concentration effect, or i t  
might counteract it;  the answer is therefore indefinite. If the 
solvent is one of the two reactants, the effect of electrolytes should 
be very small unless the other reactant is very strongly salted in, 
in which case there should be a retarding action. In  all cases the 
logarithm of the reaction rate should vary as an approximately 
linear function of the electrolyte concentration. 

The application of statistical mechanics to the effect of adding 
non-electrolytes on the rate of reaction between two uncharged 
molecules must await the development of the theory of non- 
electrolyte solutions. We may be sure that here the variation of 
the orientation with changing medium is an important factor and 
the variation of the deformation may be. Beyond that we can 
a t  present only make a few qualitative predictions in special 
cases (11). 

For reactions more complicated than bimolecular, the author 
can see no method of approach other than to assume that the 
probability of a ternary collision is the product of the probabilities 
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of the three binary collisions involved, and similarly for more com- 
plicated reactions. As with our previous assumptions, this one 
should have its greatest validity for long range forces, that is, for 
the electrolyte effect on reactions between ions. For the limiting 
law, or for less dilute solutions with rigid ions all of the same size 
which must touch to react, this requires only the replacement of 
ZAXB in equation 7 or 8 by the sum of all the cross products of 
the valences, agreeing as it should with Bronsted’s method of 
approach (1 1). 

SUMMARY 

The relation of statistical mechanics to the theory of reaction 
rates in solution, and particularly to Bronsted’s theory, has been 
reviewed, and it has been shown that the function of statistical 
mechanics is not to establish this theory, but to assist in its appli- 
cation. A discussion has also been given of the application of 
Debye’s theories to various types of reactions. 
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