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I. INTRODUCTION 

It was found by W. H. Bragg and W. L. Bragg (176) in 1913 
that the sodium chloride crystal is built up not of discrete mole- 
cules but of either atoms or ions, inasmuch as each sodium atom 
or ion is immediately surrounded by six chlorines equidistant 
from it, and each chlorine by six sodiums. Further investiga- 
tions showed that sodium chloride is not unique in this respect; 
it was found that in many other inorganic crystals the stoichio- 
metric molecule is not the fundamental constituent of the crystal, 
each atom instead being surrounded symmetrically by other 
atoms in such a way that no finite aggregates are present. Many 
of these structures are described later in this paper. 

Shortly after the early work on the determination of the struc- 
ture of crystals had been carried out, it was assumed that these 
crystals are composed of ions rather than neutral atoms, but no 
very good proof of this was given. Debye and Scherrer tried to 
show the existence of ions in the lithium fluoride crystal from a 
study of the intensity of reflection of x-rays, but their proof was 
subsequently shown to be invalid. Only within the last four 
years has a satisfactory proof of the existence of ions in crystals 
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based on intensity of reflection of x-rays been carried out (180,181). 
A quantitative theory of ionic crystals was developed between 
1918 and 1924 by Madelung, Haber, and especially Born (174). 
In  particular, Born derived formulas which permit the calculation 
of the energy of formation of an ionic crystal from separated 
ions. Thermochemical considerations involving this energy have 
aided greatly in facilitating the understanding of many crystal 
properties. Moreover, verification of the quantitative results 
obtained from the Born theory affords the best substantiation of 
the hypothesis that many crystals are built up of ions. 

Many investigators, notably Grimm (178) and his coworkers, 
have made comprehensive studies of the energy relations of crys- 
tals which, however, have in general not been very accurate be- 
cause of lack of necessary data. Within recent years a great 
amount of thermochemical data has been published which can 
be used in conjunction with crystal energies to obtain important 
thermal quantities, the values of which have hitherto not been 
known or have been known only with low accuracy. It is the 
purpose of this paper to present the fundamental ideas of the 
Born theory and its thermochemical applications, to tabulate 
values of Madelung constants and other quantities used in this 
treatment, to summarize the most recent thermochemical data 
appropriate for calculations involving crystal energies (heats of 
sublimation, heats of dissociation, ionization potentials, etc.), 
to obtain values of the electron affinity of electronegative atoms 
and other thermochemical quantities with the aid of the Born 
cycle, and to draw conclusions relative to the types of bonds in 
a number of crystals. 

11. THE LATTICE ESERGY O F  IOKIC CRYSTALS 

Our concept of an ideal crystal is based upon the fundamental 
idea that the crystal may be built up by the repetition of unit 
atomic groupings. In  order to discuss the properties of a crystal 
it is convenient to select some portion that will be representative 
of the indefinitely extended whole. For this purpose a parallele- 
piped is chosen from which the entire crystal may be built by 
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repetition along the coordinate axes; this parallelepiped is called 
the unit cell. 

The lattice energy of an ionic crystal may be defined as the 
energy change in the process of bringing the ions infinitely 
separated from one another to the positions they occupy in the 
crystal. In order to account for the stability of crystals assumed 
to be composed of ions, it is necessary to introduce forces between 
the ions which are not Coulomb forces, for it is known that no 
stable equilibrium is possible in an electrostatic system of charges 
producing fields for which the Laplace equation holds. Born and 
Land6 assumed that in addition to the Coulomb forces between 
the ions there are intrinsic repulsive forces which change rapidly 
with the distance. The idea that molecules in a solid are held 
in equilibrium by an attractive force and a more rapidly changing 
repelling force was suggested as early as 1785 by Boscovitch. 
The potential expression 

, $ = -  
a b  ;+--, a, b > O ; n > m  

has been used by several investigators, notably Gruneisen (11) 
and Mie (26). Born and Land6 (4, 5) considered a crystal to 
be composed of ions and put m = 1 and a = A$ in the above po- 
tential expression. 

For the potential of a system consisting of two ions at a dis- 
tance r apart we write 

Here x1 and zz are the valences of the ions, e is the unit of elec- 
trical charge (4.770 E.s.u.~) and b and n are constants. Figure 
1 shows the form of this function. This potential function is 
to be regarded as a first approximation only. Since the forces 
between the ions are considered to be central forces which vary 
as inverse powers of the distance, the potential may be expanded 

2 Throughout this article values of the physical and chemical constants will 
be taken from the paper by Birge (2). 
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into a power series in l / r .  In  equation 2 only the minimum 
number of terms are retained. The van der Waals’ attractive 
forces are neglected, since they are small compared to the electro- 
static forces. The forces due to polarization are small compared 
to the electrostatic and repulsive forces and their inclusion would 
constitute an approximation of the second order. Moreover the 
crystals with which we shall be most concerned possess a high 

F I G .  1. CRYSTAL ENERGY AS A FUNCTION OF INTERIONIC DISTANCE 

degree of symmetry; hence the induced dipole moments of 
the ions are self-compensating. To just what extent it is justifi- 
able to assume that the forces between the ions are purely central 
will be discussed later. 

In  accordance with equation 2 we may write for the energy per 
unit cell 

a2c2pA B 
a = - -  + G  (3) 

CHEMICAL REVIEWS, VOL. XI, 10. 1 
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where a is the largest common factor in the valences of all the 

p is the number of stoichiometric molecules in the unit cell, 
A is a constant depending only on the structure of the crys- 

tal; (it can be calculated from electrostatics and is 
known as the Madelung constant), and 

n is a constant which can be determined from the com- 
pressibility of the crystal. 

ions, 

The constant B can be determined from the condition for 
d+ 

equilibrium in the crystal - = 0, when T has the value R,, a dr 
characteristic equilibrium distance. From equation 3, 

Hence, 
a ~ + ~ ~ o n  - 

B =  
n 

Substituting this value for B in equation 3, 

For a crystal in equilibrium 

is the potential due to the Coulomb forces, and 
a V p A  

?LEO 
I - 

is the potential due to the intrinsic repulsive forces. 
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Ra may be determined from x-ray data or from the density 

The lattice energy per mole is 
of the crystal. 

where N is Avogadro's number. 
By introducing 7 in 10, 

In  general it will be found convenient to choose for R, the 

Ro = 60 (12) 

For binary compounds the smallest anion-cation distance will 
often be found useful for a value of R,. 

In  the treatment which follows, the distance R, = 6,, will be 
used for convenience, although it is to be remembered that any 
characteristic equilibrium distance may be used, provided the 
corresponding value of the Madelung constant is employed. 
Values of the Madelung constant are proportional to the corre- 
sponding equilibrium distances, that is, 

cube root of the molecular volume. 

Substituting 12 in 11, 

Introducing numerical values for the constants N and E ,  we have 

(15) 
NE2 - = 329.7 kilogram-calories 
1 A. 

Hence, 

- 
329.7 a2Ago 

60 
uo - kilogram-calories per mole (16) n 

where 6, is expressed in Angstrom units. 
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When is determined from the observed value of the density, 
equation 16 may be transformed into a more useful form by in- 
troducing the relation between density and molecular volume. 

UO = 279.0 a2 (&y Ago (1 - r) 
in which p is the density expressed in grams per cubic centimeter 
and M is the gram-molecular weight. 

1. The Coulomb energy of ionic crystals 

$n order to calculate the Madelung constant from electrostatics, 
we shall consider an idealized crystal in which the ions are to be 
regarded as spherically symmetrical and at rest in their equilib- 
rium positions. Even at the absolute zero of temperature the 
ions in any actual crystal possess zero-point energy, which, how- 
ever, is negligible compared to total energy. The energy of a 
mole of crystal will be evaluated by determining the ratio of the . 
energy of a crystal to the number of moles of that crystal as the 
number of moles becomes indefinitely large. This mode of evalu- 
ation neglects the energy due to the surface forces, for in any 
actual crystal the total energy depends upon the amount of sur- 
face and the particular planes which form the faces. This energy 
may also be neglected in a first approximation. Calculations 
have been made of the surface energy of sodium chloride; they 
will be discussed later. 

The electrostatic energy may be written as 

Here 2, and zt are the valences of the s’th and t’th ion respec- 
tively, and T , ~  is the distance between them. The primes on the 
summation signs signify that the terms for which T = 0, that is, 
for s = t ,  shall be omitted from the summation. y is the number 
of ions in a unit cell. The factor 3 arises from the fact that in 
the double summation each pair of ions is counted twice. 
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We write 

where E &  is the potential of the s’th ion, t8 being given by the 
equation 

From equation 7, 

3 Aaz. = a.4, (21) 
M 8 1 1  

The series for t5 given by equation 20 converges with extreme 
slowness. Despite this and the fact that the Madelung constant 
for sodium chloride had been calculated by Madelung and later 
by Ewald, Kendall (15), in discussing Ghosh’s theory of strong 
electrolytes, carried out the direct summation to obtain a roughly 
correct value of the Madelung constant of sodium chloride, show- 
ing that the direct method can be used. 

The evaluation of the Coulomb energy of a crystal was first 
made by Madelung (24), although unknown to him a method of 
solution had previously been given by Riemann and Appell (1). 
P. P. Ewald (10) found a rapidly converging series which is ap- 
plicable to the problem, Modifications of this method have 
been worked out by Born (3) and Emersleben (9), which con- 
siderably simplify the calculation for any crystal of the cubic 
type. Kornfeld (16) has applied Em-ald’s method to the evalua- 
tion of the energies of dipole and quadrupole lattices. 

Madelung first considered an infinite 
row of charges with periodic repetition of pattern after a length a. 
The electric density along the row may be represented by a 
Fourier series. The potential for a point outside the row may be 
represented by a corresponding Fourier series having the same 
period as the electric density. The potential must satisfy La- 
place’s equation and must vanish a t  infinity. These conditions 

1. Madelung’s method. 
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are sufficient to determine the expression for the potential. For 
an electrically neutral row of alternating charges the potential at  
a point (r, x) proves to be 

V(r,x) = -- 8 e 2  3 KO c$) cos 2 7 *1x 
n 

2 = 1,3,5.. . 
(22) 

Here KO is the Hankel function tabulated by Jahnke and Emde 
(14) as 

4 i T H p ( i 2 )  

The series is rapidly convergent, only a few terms being neces- 
sary to attain good accuracy. 

The 
potential at  a charge in a neutral row of charges is 

Equation 22 is not valid as r approaches the value zero. 

The charge at  the origin must be omitted, for otherwise the poten- 
tial would be infinite. 
’ By extending the above method, an expression for the potential 
of a plane of charges may be derived. For an infinitely extend- 
ing neutral rectangular plane lattice consisting of alternating 
charges as in a sodium chloride layer, the potential at  a height z 
above the plane is 

The potential of the entire crystal is obtained by decomposing 
the lattice into neutral point series and lattice planes and then 
calculating the potential due to  each plane and row. 

2. Ewald’s method. By means of the identity 
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the potential given by equation 20 may be expressed as an inte- 
gral. The integrand can be represented as a theta function of 
three variables. If a transformation formula is applied to this 
theta function a Fourier representation of the potential is ob- 
tained. By introducing an arbitrary constant, 7, the integral 
expressing the potential may be separated into two terms by 
means of the relation. 

J m  ydx = l7 ydx + Im ydx 

By applying the transformation formula for the theta function 
to the first integral, Ewald obtained two series which are suitable 
for numerical calculation. 

The potential g8 in equation 20 is given by the following 
equations 

E, = tp + $2’ (27) 

where 

and 

The value of the arbitrary constant 7 determines the rapidity 

S,,, is defined by the relation 
of convergence of each series. 

Y 

- 2 , i (hx j  + k2/j + 1 z j )  shk, = z j  e 
j = 1  

where xj yi xi are the coordinates of the j’ th ion relative to the 
s’th ion. 

hkl are the Miller indices of a plane, dhkl being the interplanar 
distance for this set of planes. 
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The accent on the summation sign in equation 28 signifies that 

R, is the distance from the t’th ion to the s’th ion. 
the term for which (hkl) = (000) is to be omitted. 

The function Q (f> is defined by the probability integral 

In  actual computation a value of 7 is chosen that will make the 
two series equally rapidly convergent. In  this case each series is 
itself rapidly convergent, only a few terms being needed to give 
high accuracy. A valuable feature of Ewald’s method is that an 
independent check on the numerical result may be obtained by 
carrying through the computation a second time using a different 
value of 7. 

3. Born’s method. By dividing the unit cell into n sub-cells by 
means of three systems of equidistant planes parallel to the sides 
of the cell, any given ion distribution may be approximated by 
considering each ion to be located at  one of these sub-lattice 
points. The position of an ion is given by the coordinates 

where PI,  Pz,  P3 are integers which may assume the P1 Pz P3 
n n n ’  
values 0, 1, 2, . . . n - 1. 

For a cubic crystal the energy of a unit cell is given by the 
equation 

- - -  

where a, is the length of a cube edge of the unit cell. 
S p  is defined by the equation 
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Born designates 

as the “Grundpotential”. 
charge distribution 

It is the potential at the origin of a 

COS 2~(rnlP1 + m2Pz + mZ3) 

The Grundpotential is defined by the formula 

The accent on the summation sign signifies that  the term for 

By means of the Ewald formulas the Grundpotential may be 
which tl = tz = ta = 0 is to be omitted. 

separated into two terms 

(35) (2) n = n‘” + n 
where 

and 

In equation 36, 

- z = (k1 - 21)‘ + (kz - 22)’ + (kg - 23)’ (38) 

By means of these formulas Emersleben has calculated a table 
of Grundpotentials for n = 12. 

The energy of a unit cell as given by equation 32 may be calcu- 
lated with great simplicity, since only a small number of terms are 
involved in the summation. 
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4. Madelung constants. Of the three methods just described 
for evaluating the Madelung constant, Ewald’s method is the only 
one of general applicability. Although the series given by equa- 
tions 22, 23, and 24 converge rapidly, Madelung’s method cannot 
be applied in many cases because of the impossibility of decom- 
posing the lattice into neutral point series and lattice planes. 
Moreover, the method has the disadvantage that it is easy to omit 
through oversight the potential due to a row of charges, as was 
done by Land6 (17) in the calculation of the Madelung constant 
of fluorite. An evaluation of the Madelung constant by the use 
of the Born Grundpotential is by far the most convenient. Un- 
fortunately, however, the numerical table of Grundpotentials 
calculated by Emersleben can be applied only to cubic crystals 
in which the parameters determining the ionic positions are inte- 
gral multiples of one-twelfth of the length of a cube edge. 

In  the sodium chloride structure, the first for which the Made- 
lung constant was evaluated (by Madelung himself), the positions 
of the ions are completely determined by the symmetry require- 
ments of the structure. In  general, however, this is not the case; 
the positions of the ions depend on one or more parameters, and 
the Madelung constant must be evaluated as a function of these 
parameters. For more than one parameter the calculations be- 
come very laborious. 

Table 1 gives the Madelung constants which have been evalu- 
ated. Here ra is the smallest anion-cation distance, 6, is the cube 
root of the molecular volume, and a, is the edge of the unit cube. 
The maximum values of the Madelung constants are given for 
those structures where they have been evaluated as a function of 
one or more parameters. These structures will now be considered 
individually. 

Bollnow (37) has calculated by the 
Ewald method the Madelung constants for the rutile and ana- 
tase structures as functions of parameters which determine the 
cation-anion distance. 

Figure 2 and figure 3, taken from “Strukturbericht” (177), 
show the structures. The lattice is tetragonal in each case. 
Each structure is determined by two parameters-the axial ratio 

(1) Rutile and anatase. 
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Ago 

2 201785 
2 035356 
2 38309 
2 386 
7 33068 
6 54364 
7 70 
8 04 
6 21 
9 5915 
5 825 
2 37744' 
9 996361 
3 39098$ 

and a parameter which fixes the position of the oxygen ions. EJ- 
assuming in each case that the oxygen ions are coordinated about 
the titanium ions so that the titanium-oxygen distance is con- 
stant, relations between the two parameters are given by the 
geometry of the structures. This assumption is in agreement 
n-ith the experimentally measured values of the parameters. 
Thus one independent parameter becomes sufficient to determine 
each structure. 

A% 

3 495115 
2 035356 
3 78292 

11 63656 
9 50438 

12 37744' 
63 49026t 
53 00488$ 

BTRCCTURE 

NaC1.. . . . . . . . . . . . . . . . . . . . . . . . . . .  

znts 

Ar, 

1.747558 

Cuprite.,  . . . . . . . . . . . . . . . . . . . . . . . .  
Rut,ile.. . . . . . . . . . . . . . . . . . . . . . . . . .  

REFERENCE 

4.11552 
4.816 

* These values have been computed by the author. 
t The values given are those computed by the author; they are in agreement 

The Pt-C1 distance is taken Kith the results of Lennard-Jones and Dent (46). 
as 0.25 times the length of a cube edge. 

$ Unpublished calculations of F. J. Ewing. 

&Quartz. . . . . . . . . . . . . . . . . . . . . . . .  
Corundum.. . . . . . . . . . . . . . . . . . . . . .  
Perovskite, . . . . . . . . . . . . . . . . . . . . . .  
KzPtCls . . . . . . . . . . .  
("4) 3AlFs. , , , . , . , . . , , . , , , . . , , , . 

The results of Bollnow for the Madelung constant of rutile may 
be expressed as a power series in 0.721 - O( for values of 01 in this 
neighborhood, 01 being the axial ratio. The equation is3 

( 9 9 )  

The maximum occurs for CY = 0.721. The average observed 
values for a number of crystals is only 0.67. 

A,, = 4.816 - 4.11(0.721 - 

3 These equations have been calculated by Pauling (29). 

4.4394 
25.0312 
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For anatase the equation expressing the Madelung constant as 
a function of the axial ratio is the following? 

A,, = 4.800 - 0.709(2.620 - a)* (40) 

The maximum value of A,, occurs for CY = 2.620, the observed 
value being 2.51. 

e + q 4 gJ 0" 
FIQ. 2. RUTILE 

f ? 2 3 y spgo 
FIQ. 3. ANATASE 
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Since Bollnow has not taken into consideration the repulsive 
forces, this being physically equivalent to considering the ions as 
rigid particles, it is not to be expected that there will be close agree- 
ment between the calculated and observed axial ratios. By con- 
sidering in detail the repulsive forces Pauling (29) and also Len- 
nard-Jones and Dent (19) have obtained satisfactory agreement 
with experiment, and have accounted for the observed varia- 
tion in axial ratio for different crystals with the rutile structure. 

(2) @-Quartz. Hylleraas (43) determined the Madelung con- 
stant of the hexagonal crystal &quartz as a function of two 

b i j ir 
FIQ. 4. &QUARTZ 

parameters by a procedure simiiar to that used by Bollnow for 
anatase and rutile. 

Figure 4, taken from “Strukturbericht” (177), shows the lattice 
of D-quartz. The unit cell contains three molecules. The struc- 
ture is completely specified by three parameters-the axial ratio 
e/a, the silicon-oxygen distance, and a parameter which deter- 
mines the position of the oxygen ions. By considering 8-quartz 
to be an ideally coordinated structure with constant silicon-oxygen 
distance, the number of independent parameters is reduced to two. 
For convenience Hylleraas chose the axial ratio c/a,  and the param- 
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u = 1/12 
1/4 
5/24 
1/6 

eter u determining the distance of the oxygen ions from the 
hexagonal axis. Table 2 gives the values of AF,. 

The maximum value of A,, is 4.4445, the corresponding values 
of c/a and u being 1.117 and 0.22729 respectively. By assuming 
the compressibility of p-quartz to be not greatly different from 
that of a-quartz, the compressibility data yield a value of n = 8. 

Hylleraas repeated the preceding calculations, taking the oxy- 
gen-oxygen repulsive forces into account and using the value n 
= 8, and found that the minimum of the potential energy occurs 
a t  c /a  = 1.0978 and u = 0.216, the value of A,, being 4.4394. 
If the oxygen-oxygen repulsion were very large, the Si04 tetra- 
hedra would be regular, which would lead to the parameter values 
c/a = 1.098 and u = 0.211. These considerations all indicate a 
value for c/a of about 1.10, in good agreement with the experi- 

TABLE 2 
Values of ATO for the &quartz structure 

4.1754 
4.4216 4.4275 4.4288 
4.4261 4.4303 4.4317 
4.2209 4,2540 4.2862 

4.4248 

c/a = 1.414 1 c/a = 1.732 

4.3998 

mental value 1.0926 determined by Rinne and Kolb (30), and a 
value for u between 0.211 and 0.22729. Bragg and Gibbs (7) 
have made x-ray measurements leading to u = 0.208, with limits 
of 0.187 and 0.219, while Wyckoff (36) reports 0.197 f 0.004. 
If Wyckoff's value is accurate, some other factor must be taken 
into account to explain the drop below 0.211. It is probable that 
this factor is a tendency to form bonds with some shared-electron- 
pair character. The angle between the two bonds formed by 
an oxygen atom is 155.5' for u = 0.211, whereas electron-pair 
bonds mould tend to make the angle 109.5' with each other. 
The angle is decreased by decreasing u, so that this effect would 
lead to a change of u in the desired direction. 

Hund (42) has evaluated the Madelung 
constant of cadmium iodide as a function of two parameters 
which determine the structure. 

(3) Cadmium iodide. 
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Figure 5, taken from “Strukturbericht” (177), shows the hexa- 
Hund chooses for the two parameters the axial 

Table 3 
gonal lattice. 
ratio, c/a,  and the x coordinate of the iodide ion, u. 
gives-the - values of Are, 

FIQ. 5 .  CADMIUM IODIDE 

The maximum value of A ,  4.74, lies a t  c/a = 1.61 and u = 
1/8, approximately. The values observed for cadmium iodide 
and other crystals with this structure are c/a = 1.61 andu = 1,;4, 
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cla = 0.815 cla = 1.12 cla = 1.61 

u =- 0 4.55  4 .63  4 . 6 4  
1/16 4 .53  4.65 4.68 
1/8 4.58 4 .72  4 .74  
1/4 4 .68  4.73 4.71 

the difference in the value of u probably being due to the effect 
of the repulsive potential of the ions and to a tendency to form 
bonds with some covalent character or for the cations to polar- 
ize the anions. Hund in his paper attempted to take the effect 
of polarization of the iodide ions upon the energy into account. 
(4) Corundum. Schmaeling (48) has evaluated the Madelung 

constant of corundum as a function of two variables. Figure 6, 
reproduced from the paper by Pauling and Hendricks (182), 
shows the structure. 

The unit of structure is a rhombohedron containing two mole- 
cules of A1,03. At each vertex and at the center of the rhombo- 
hedron there is a molecule of A1203 so arranged that the three 
oxygen ions form an equilateral triangle in a plane normal to the 

c/a = 2 00 cla = 4 W 

4 . 6 4  4.64 
4.72 4.68 
4 .73  3.87 
3 .90  -2.06 

line joining the two aluminum ions and midway between them. 
Thus each aluminum ion is surrounded by six oxygen ions a t  the 
corners of an irregular octahedron, three of the oxygen ions being 
closer to a given aluminum ion than the remaining three. Each 
oxygen ion is surrounded by four aluminum ions at the corners of 
an irregular tetrahedron, two of the aluminum ions being closer to 
a given oxygen than the remaining two. Table 4 gives the experi- 
mental values of the ionic distances for corundum and the iso- 
morphous crystal hematite. 

The structure is completely determined by four independent 
parameters which may be chosen as follows: 

a = the diagonal of a rhombohedral face, 
c = one-half the length of a body diagonal, 
v = the distance between two adjacent aluminum ions, and 
r1 = the radius of a circle circumscribed about an equilateral 

triangle containing three adjacent oxygen ions. 
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From these, three dimensionless variables may be derived :- 

C V T l  
; w = -  a’ a 

y = - ’ w ‘ -  

It is impractical to carry out the calculation of the lattice energy 
as a function of these three independent variables. The actual 
crystals may be roughly approximated by the ideal case in which 

b 
FIQ. 6. CORUNDCM 

each aluminum ion is equidistant from six oxygen-ions. This 
approximation reduces the number of independent variables to 
two. Equation 41 expresses the Madelung constant as a func- 
tion of y and w.  

(41) 
A,, = 25.0312 - 5.930(1.312 - r)2 - 65.250(0.5454 - w)’ + 

30.70(1.312 - y)(0.5454 - w )  

The maximum value of A,, is 25.0312, corresponding to y = 
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AliOa.. ..................... 
Fe&. ...................... 

1.312 and w = 0.5454. Table 5 compares these results with ex- 
periment. 

The deviation of approximately 5 per cent in the calculated and 
observed parameters is not surprising, in view of the assumptions 
which were made in order to carry out the calculations. The 
values in table 4 show that in reality corundum and hematite 
deviate considerably from the ideal coordinated structure. The 
percentage deviation in the calculated and observed parameters is 
due in part to this idealization and in part to the fact that the 
repulsive forces were not considered. 

r' 7' M E A N  PERCENTAQE 
D E V I A T I O N  

1.990 1 0 . 0 2 0  1.845 10.015 1.906 4 . 4  
2.060 =t0.035 1.985 &0.025 2.02 2 . 0  

TABLE 4 
Ionic  distances fo r  corundum and hematite 

Calculated 

1.312 
0.5454 
0.286 

-- 
4.0 
5 .1  
5 .6  

TABLE 5 
Values of y, a, and p f o r  corundum and hematite 

1.312 1.366 
0.545 0.575 &O 006 
0.286 0.292 &0.007 

I HEMATITE CORUNDUM 

Y 
w 

P 

Observed 

1.366 
0.575 &0.006 
0.303 1 0 . 0 0 3  

I Observed 
Percentage Calculated 
deviation 

Percentage 
deviation 

4.0 
5 . 1  
0 . 2  

The value of the Madelung constant included in table 1 is the 
maximum for the ideal structure. 

2. The repulsive energy of ionic crystals 

It has already been pointed out that in order to account for the 
stability of ionic crystals it is necessary to introduce repulsive 
forces in addition to the ordinary Coulomb forces. In  the Born 
equation for the crystal energy (equation 3) the first term, which 
gives the energy due to the Coulomb forces, follows directly from 
Coulomb's law. On the other hand the analytical form of the 
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repulsive potential is purely empirical. It has previously been 
shown that for any given crystal the two constants which occur 
in the repulsive potential of equation 3 can be evaluated from the 
observed interionic distance and the compressibility. This 
method of evaluation is necessary as long as there is lack of knowl- 
edge concerning the repulsive forces. However, it  has the dis- 
advantage that two principal properties of the crystal must be 
experimentally determined in order to calculate other properties; 
hence that calculations can be carried out only for actually exist- 
ent crystals. A more satisfactory treatment would be one in 
which the two constants are determined independently of any 
crystal property so that the repulsive energy could be evaluated 
by a procedure analogous to the methods given for determining 
the Coulomb energy. 

After setting up the expression for the potential energy, Born 
and Land6 (6) sought to evaluate the repulsive exponent by 
considering the interaction of the ions on the basis of the Bohr 
atomic model in which the electrons are supposed to revolve 
about the nucleus in plane orbits. This treatment led to the value 
of n = 5 for all ions, which is in disagreement with compressibil- 
ity data. Born and Land6 attributed this disagreement to the fact 
that the electrons are not revolving in plane orbits but are spa- 
tially distributed about the nucleus. Born then calculated the 
repulsive exponent by considering the interaction of the ions on 
the basis of the Lewis-Langmuir model in which the electrons of 
the completed outer shell are arranged a t  the corners of a cube. 
This led to a value of n = 9 for all ions except those with the hel- 
ium structure, for which n = 5 .  This model has formed the basis 
of very extensive studies in which the attempt mas made to corre- 
late physical properties of substances with the size of the hypo- 
thetical cubes estimated from experimental data. However, the 
idea that repulsive forces of ions arise from the interaction of 
quadripole and higher moments is no longer valid. Unsold (34) 
has pointed out that according to  quantum mechanics ions with 
completed sub-groups are spherically symmetrical. The repul- 
sive forces arise mainly from the mutual interpenetration of the 
ions and the resultant repulsion of the nuclei. 
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I. Repulsive exponents derived from compressibilities. The re- 
lation between the repulsive exponent n and the compressibility 
can be derived from the following considerations. 

In  accordance with equations 7 and 10 we may write for the 
molal energy of a crystal 

The condition 

(z) = o  
r = do 

is satisfied. From equation 42 

&*AN(n - 1) 
6: = - 

The compressibility is defined by the equation 

1 dv 
v d P  x = - - -  

where P is the pressure and v is the molal volume. 
Hence 

d P  1 
X dv 

- v- - =  

(43) 

(44) 

(45) 

The pressure applied to the crystal is related to the total 
energy, E, of the crystal by the thermodynamic equation 

P = + (g) 
T 

aP 
At 0°K. the term T - equals 0, and equation 47 becomes bT 

d U  d U  dr p = - = - . -  
dv dr dv 

(47) 

since the total energy a t  0°K. is entirely potential (except for 
zero-point energy which is negligible in comparison with U). 
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Differentiating 48 

(49) 

When the crystal is in equilibrium with the applied pressure, 

d P  d2U d2U d2r d U  
dv dv2 dr2  (gy + dv2 * dT _ = - = -  

equation 49 becomes 

d p  = [g (3'1 
r = 80 dv 

Substituting this value of dP/dv in 46, 

The molal volume 2, is 
v = Nr3 

Differentiating with respect to r,  
dv 
- = 3 N T ~  
dr 

hence, 

By substituting 44 and 54 in 51 

(53) 

Finally, 

(56)  

Slater (32) measured the compressibilities of eleven alkali hal- 
ides up to  pressures of 12,000 atmospheres, and at two different 
temperatures. By extrapolation he obtained the values of the 
compressibilities a t  zero pressure and 0°K. Column 2 of table 
6 gives the values of n calculated from equation 56. 

9 6: 
n = I + -  

a:ezAx 
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n(S1ater) 

LiF. . . . . . . . . . . . . . . . . . . . . . . . .  5.9  
LiCl . . . . . . . . . . . . . . . . . . . . . . . .  8 .0  
LiBr. . . . . . . . . . . . . . . . . . . . . . . .  8 .7 
KaC1. . . . . . . . . . . . . . . . . . . . . . .  9.1  
XaBr,  . . . . . . . . . . . . . . . . . . . . . .  9.5  
KaI . . . . . . . . . . . . . . . . . . . . . . . .  

Lennard-Jones (18) has determined the force fields of the inert 
gases from the observed equations of state and viscosity values. 
By assuming that the repulsive exponent for an ion is the same 
as for the inert gas of the same electronic configuration, he pre- 
pared a table of n values for different ion pairs. Column 3 of 
table 6 gives the results for the sodium halides. 

In  calculating ionic radii in crystals Pauling derived an ex- 
pression for the dependence of radius on valence of the ion; this 
expression involves the repulsive exponent n. Pauling has chosen 
values of n in accordance with table 7. Averages of these values 
for the two ions concerned are given in the fourth column of 
table 6. 

In  calculating the crystal energy by the Born equation (equa- 
tion 11) n is involved as the factor (1 - l/n) In  many crystals 

TABLE 6 
Repulsive exponents f o r  alkali halides 

n( Lennard-Jones) 

9 .0  
9 .0  

10.0 

n(Pau1ina) 

6.0 
7.0 
7 . 5  
8 .0  
8.5 
9 .5  

n is approximately equal to nine, so that a change of n by one unit 
changes the crystal energy by approximately 1.5 per cent. Since 
this is approximately the error inherent in the Born theory, it is 
not significant for the purposes of evaluating crystal energies to 
know n more precisely than this. The procedure which Paul- 
ing has used affords a simple means of determining the repulsive 
exponent for any ion-pair; since these values are in agreement with 
the results of experiment, they will be used in all calculations of 
crystal energies throughout this paper. 

A more general expression than the Born equation for the crys- 
tal energy is the fol!owing: 
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ION TYPE 

He, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ICr, Ag+.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Xe, A u C . .  . .  

The subscripts 11, 12, and 22 refer to cation-cation, anion-ca- 
tion, and anion-anion interaction respectively. The numerators 
of the three repulsive terms have each been divided into two 
factors, in analogy with the Coulomb term. bll, blz, and bzz 
(analogous to e2) denote the force constants between the ions. 
Bll, Blz, and Bzz (analogous to the Madelung constant) depend 
only upon the value of n and the type of structure. For the 
sodium chloride structure, Bll is given by the relation 

1 
B l l ( n d  = Z’ f l l l  (58) 

I i  + 1 2  + la 
even (l1 + z 2  + 18)y 

Zl, Zz, and Z3 are integers. The accent on the summation sign 
signifies that the term for which Zl = Z2 = Z3 = 0 is to be omitted. 

TABLE 7 
V a l u e s  of the repulsive ezponent ,  n 

n 

5 
7 
9 

10 
12 

At first Born assumed that all ions repel each other in the same 
way, but later he concluded from experimental values of the co- 
efficients of elasticity of sodium and potassium chlorides that like 
ions exert a characteristic attraction about one-half as great as 
the intrinsic repulsion of unlike ions. In  other words, bzBz in 
equation 57 was taken as - $bllBll = - $b22B22. This result was 
accepted and used for all types of crystals in the treatment of 
residual rays, heats of sublimation of crystals, the relative stabili- 
ties of different crystal structures, and other properties of crystals. 
Born’s result is incorrect. It is improbable that the constants 
in equation 75 are ever negative. Moreover Pauling has shown 
that the relative magnitude of the repulsive forces between unlike 
ions and those between like ions varies with the “sizes” of the 
ions. In  simple cases the forces between two atoms or ions may 
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be calculated by means of quantum mechanics (27). In  the case 
of ions each having several electrons the calculations are very 
complicated. Using a simple atomic model capable of treatment 
by the perturbation methods of quantum mechanics, Pauling (29) 
has derived an expression showing the dependence of the repulsive 
energy upon the relative sizes and valences of the ions. The 
constants bll, biz, and b,, are given by the relations4 

(61) 

r+ and T -  are "standard radii" characteristics of the sizes of the 
ions, pI1, plz, and pzz are factors which depend upon the valences 
of the ions, and Bo is a constant for all ions. 

Lennard-Jones and Dent (20) have evaluated the force con- 
stants for ions by a procedure which is fundamentally similar to 
that used by Pauling. They have employed a relation between 
the relative sizes of atoms and ions (obtained by Wasastjerna from 
refractive indices of crystals and salts) and the corresponding 
force constants. Values of these force constants were tabulated 
by them (20). 

In  evaluating the constants Bll, Blz, and Bz2 Lennard-Jones 
considered an infinitely large crystal and took for the limits of 
summation in equation 58 ZI + Z2 + Z3 = 2 ta Zl + Z2 + Z3 = 05. 
This procedure is not justified theoretically, for it assumes that 
the repulsion is given by the same law of force for all distances 
and that the repulsive force between two ions is independent of 
the presence of intervening ions. Pauling has carried out the 
summations only over the immediately neighboring ions. For 
values of n of the order of magnitude of nine, the series given by 
equation 58 converges so rapidly that it is relatively unimportant 
which value of B is used. Lennard-Jones and Ingham (22) 
have calculated values of B appropriate to simple, face-centered, 
and body-centered cubic lattices for values of n from 4 to 30. 

ns - 1 bzz = 8 2 2  (r- + T-1 BO 

4 In  Pauling's paper these equations are misprinted, the factors ( r r  + T = ) " - *  

being given as (r* + TA)". 
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Pauling has applied his treatment in the discussion of a number 
of crystal properties. In  particular he has shown the importance 
of the relative sizes of ions in causing deviations from additivity 
of interionic distances of alkali halides and in affecting many 
other crystal properties. 

By using the force constants and repulsive exponents in con- 
junction with the proper crystal potential constants Lennard- 
Jones (19, 21), Chapman (8), Topping (33), and others have 
evaluated the crystal energy as a function of the interionic dis- 
tance and a parameter which determines the structure. For the 
crystals which have been considered-carbonates and nitrates 
of the calcite structure, crystals of the rutile structure, etc.- 
it is found that the interionic distances determined by x-rays 
correspond closely to the minimum energy. 

3. Criticism of the Born treatment 
The Born expression for the repulsive potential can be con- 

sidered only as a rough approximation, the two constants B and 
n being so chosen that first and second derivatives at r = ro are 
given correctly. It was indeed pointed out by Unsold (35)  and 
Pauling (28) that the quantum mechanics leads to a complicated 
expression for the repulsive potential which involves exponential 
terms in r. It cannot be expected, then, that the Born expression 
will give correctly the repulsive potential itself or its third and 
higher derivatives. This has been verified by Slater's measure- 
ments of the alkali halides. If the Born expression were correct, 
the quantities 

and 3+0 - - 10 9 640 1-- 
13.94 c2xo xo 

should both be equal to the repulsive exponent for a sodium 
chloride type crystal ($o is the pressure coefficient of compressi- 
bility and xo the compressibility, both extrapolated to 0°K.). 
The values of these quantities found by Slater, given in table 8, 
are not in general identical for a given substance. Some crys- 
tals show large differences which make the Born treatment neces- 
sarily inaccurate for them. 
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Hildebrand (12) has considered the thermodynamic limitations 
of the Born equation. The constants B and n in the repulsive 
energy term should be evaluated from the lattice constant at 
0°K. and the compressibility a t  0°K. and zero pressure. If the 
compressibility at ordinary temperatures is used, the value of the 
repulsive exponent thus calculated will be too small because the 
thermal pressure will have been omitted. By applying a thermo- 
dynamic equation of state, Hildebrand has given a method of 
evaluating the energy of a crystal from its elastic constants a t  
room temperature, thus avoiding the uncertain extrapolation of 
the compressibility to 0°K. The repulsive exponents of six alkali 

TABLE 8 
Quanti t ies  derived f r o m  compressibilities at 0°K. 

CRYETAL 

~ ~ ~~ 

. . . . . . . . . .  
LiCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NaCl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

KF. .  . . . . . . . . . . . . . . . . . .  
KCl . . . . . . . . . . . . . . . . . . . . . . . . . .  

KI . . . . . . . . . . . . . . . . . . . . . . . . . . .  

RbI . . . . . . . . .  . . . . . . . . . .  

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  

5 . 9  
8 . 0  
8 . 7  
9 . 1  
9 . 5  
7 . 9  
9 . 7  

10.0 
1 0 . 5  
10.0 
11 .o 

14.3  
1 1 . 9  
12.8 
9.8 
9 . 5  
8 . 9  
6 . 5  
7 . 1  
6 . 8  
6 . 2  
6 . 8  

halides thus calculated lie between 11 and 12, and the values 
found for the crystal energies a t  room temperature are 1 to 2 per 
cent higher than those ordinarily calculated. 

These considerations show that values of the crystal energy 
calculated with the use of the Born repulsive potential expres- 
sion can hardly be trusted to be more accurate in general than 
to within 25 per cent of the contribution of the repulsive potential 
to the energy; that is, to within 2 or 3 per cent of the crystal 
energy itself. It will be found later that this conclusion is sub- 
stantiated by thermochemical considerations involving calcu- 
lated crystal energies. The fact that crystal energies can not be 
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calculated with greater accuracy does not, however, prevent 
their use in many interesting and important considerations. 

4. The surface energy and edge energy of sodium chloride 
In  calculating the crystal energy, the energy due to the surface 

forces and edge forces in any actual crystal was neglected. It is 
of interest to consider the magnitude of these energies. Lennard- 
Jones and Taylor (23) have calculated the surface energies 
and edge energies for several crystals. For the (001) plane 
in sodium chloride the surface energy amounts to 96 ergs per 
square centimeter and the edge energy to 3.97 x ergs per 
centimeter. The crystal energy of sodium chloride (table 17) 
is 179,200 calories per mole, so that for one mole of crystal in the 
form of a cube bounded by ( O O l ) ,  (OlO), and (100) planes, the 
surface and edge energies are entirely negligible compared to the 
crystal energy. If, however, one mole of sodium chloride con- 
sists of a large number of minute crystals, the surface and edge 
energies may become appreciable in comparison to the crystal 
energy. A simple calculation shows that for crystals of sodium 
chloride in the form of cubes bounded by (loo), ( O l O ) ,  and (001) 
planes the sum of surface and edge energies is less than one per 
cent of the crystal energywhen the length of a cube edge is greater 
than 27 A,, and is less than one-tenth of one per cent when the 
length of a cube edge is greater than 220 A. 

111. THE BORN-HABER THERMOCHEMICAL CYCLE 

Unfortunately the lattice energy is not a directly measurable 
quantity. Born (175) and Haber (179) devised a thermochemical 
cycle by means of which the crystal energy can be related to 
measurable thermal data. This cycle is shown belows 

[WXI -+ (&I+) + (X-) 
p + E  I 

-8-D 
[MI + 3 Xz - (MI + (XI 

In accordance with the customary chemical practice brackets are used to  
designate crystalline substances while parentheses denote substances in the gase- 
ous state. 
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(For convenience a binary uni-univalent crystal is used as an 
example in this discussion, although it is to be remembered that 
the treatment is valid for any other type of crystal provided that 
appropriate modifications are made.) 

This diagram represents the following cycle : 
1. The crystal is dispersed into gaseous ions. 
2. The ions are converted into monatomic (neutral) gases. 
3. The elements as monatomic gases are converted to their 

standard states a t  25°C. and one atmosphere pressure. 
4. The elements in their standard states are combined to form 

the crystal. 
The symbols are defined by the following thermochemical equa- 
tions : 

[MX] = (M+) + (X-) AHzss = U, crystal energy 
[Mx] = bI + 4 xz AH298 

[MI = (11) AH293 = S, heat of sublimation 
fxz  = (X) AH2@8 = D, heat of dissociation 
(A I )  = (M+) + (E-) AHOOK. = I, ionization potential 
(X-) = (XI (E-) AHOOK. = E, electron affinity 

= &, chemical heat of formation 

The changes in heat content6 must add up to zero; hence, 

U = & + S + Z + D - E  (62) 

The cycle given by equation 62 is t o  be regarded as isothermal 
a t  25°C. If the heat capacity of the metallic ion is assumed to 
be the same as that of the gaseous metal, then the change of 
ionization potential with temperature will depend only upon the 
heat capacity of the electrons. If a corresponding assumption 
be made concerning the heat capacities of the electronegative 
atom and ion, then the change of electron affinity with tempera- 
ture will similarly depend only upon the heat capacity of the 
electrons. Since the electron affinity and ionization potential 
enter into the thermochemical cycle with opposite sign, the error 
introduced by neglecting the thermal energy of the electrons in 

6 For the definition of heat content and other chemical terms used in this paper 
the reader is referred to Lewis and Randall: Thermodynamics and the Free En- 
ergy of Chemical Substances, lIcGran--Hill Book Co., Sew York. The nomencla- 
ture of this book will be followed throughout this paper. 
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the process of ionization of the metal will just cancel that intro- 
duced by neglecting the thermal energy of the electrons in the 
process of removing an electron from the electronegative atom. 

The Born-Haber cycle can be applied to the calculation of any 
one thermal quantity when all the others are known. Many 
applications of this kind have been made. Within recent years 
many new thermal data have been published and those which are 
appropriate to the Born-Haber cycle have been collected and are 
tabulated in this paper. 

1. Chemical heats of formation of compounds 
The chemical heat of formation of a compound at 25°C. is the 

change in heat content which occurs when the compound is 
formed from the elements in their standard states a t  25°C. The 
heats of formation of many inorganic salts are well known. The 
values to be used in thermochemical calculations have not been 
collected separately but are given in appropriate tables. Cnless 
otherwise specified, the values given are those tabulated in the 
International Critical Tables, Volume V, or in Landolt-Bornstein, 
5th edition, 1st or 2nd Ergiinzungsband. 

2. Heats of sublimation of metals 
The molal heat of sublimation of a metal a t  the temperature T 

will be defined as the change in heat content which occurs when 
one gram-atom of the metal in the crystalline state which is most 
stable at this temperature is converted to monatomic vapor. 
With the exception of those of the alkali metals and the V-b and 
VI-b groups of the periodic table all metallic vapors can be con- 
sidered to be monatomic a t  all temperatures. If the heat of 
vaporization of a metal is known a t  the temperature T,  and the 
heat of fusion at the melting point TF,  then the heat of sublima- 
tion a t  298.2°K.7 can be calculated by means of the equation 

A H a  = AHs f A H p  + i: (c,),dT + JT:(cp)dT - (c,),dT ( 6 3 )  Lylgy 
7 For convenience 25OC. will hereafter be written as 298"K., although the more 

precise value 298.2%. mill be used in calculations vivhich warrant this accuracy. 
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(c~)~, ( c ~ ) ~ ,  and (c,), refer to the atomic heat capacities of crystal, 
liquid, and vapor, respectively. If t,he metal has several allo- 
tropic modifications between 25°C. and the melting point, the 
term 

l: ( c p ) d T  

must be replaced by the expression 

where the modification s1 is stable between 298°K. and TI ,  sz 
between T1 and Tz ,  etc., and aHlz is the heat of transition at the 
temperature T1 between s1 and sz, etc. 

The heat of vaporization is the largest of the energy quantities 
occurring in equation 63; it comprises about 80 to 95 per cent of 
the heat of sublimation, and should therefore be known with the 
greatest percentage accuracy, but unfortunately this is almost 
never the case. For some metals the error in the value of the 
heat of vaporization is greater than the value of the terms in- 
volving the heat capacities. For this reason no cognizance will 
be taken of the various allotropic forms of a metal, except for iron, 
cobalt, nickel, etc., for which the heats and temperatures of tran- 
sition are well known. 

Reliable calorimetric determinations 
of heats of vaporization of metals are available only for mercury 
and cadmium (50). For all other metals it is necessary to calcu- 
late the heat of vaporization from other data. There are two 
important methods available, one of which depends upon the use 
of the Clausius-Clapeyron equation, the other upon the use of 
the Sackur-Tetrode equation and the third law of thermo- 
dynamics. 

In  its exact form the Clausius-Clapeyron equation may be 
written 

1. Heats of vaporization. 

d P  AH 
dT TAv 

= -  - 
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where P denotes the vapor pressure of the liquid or solid, AH 
the heat of vaporization or sublimation, and AV the change in 
volume which occurs when the liquid or solid is converted to 
vapor. It is to be noted that the evaluation of AH based on the 
Clausius-Clapeyron equation alone requires vapor pressure to 
be known a t  least for two different temperatures. If the vapor 
pressure is known for only one temperature, e.g., the normal boil- 
ing point, it is possible to evaluate AH by means of the Sackur- 
Tetrode equation and the third law of thermodynamics. 

When a solid or liquid is in equilibrium with its vapor, we may 
write 

AF = 0 = AH - TAS (65) 

Here A S  is the change in entropy when one mole of solid or 
liquid a t  the temperature T is converted to vapor. If the con- 
densed phase is a liquid, 

AH, = TAS = T(S ,  - Si) (66) 

The entropy of a perfect monatomic vapor can be calculated by 
means of the Sackur-Tetrode equation : 

3 
2 

S,  = RlnT + -RlnW - RlnPat, + RlnQ - 2.2985 (67) 

= 11.4351 log T + 6.861 log W - 4.574 log P,, f 4.574 log Q + 10.8780 

Here W is the atomic weight of the element, and 
Q is the quantum weight of the normal state; 

& = 2 j + 1  (68) 

where j is the total angular-momentum quantum number. 

from the following equation : 
The entropy of a liquid a t  the temperature T may be obtained 

When the necessary data are available, equations 65, 66, and 68 
permit the evaluation of the heat of vaporization. Unfortu- 
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nately only meagre data exist for the heat capacities of liquid 
metals, and in some cases only approximate values are known for 
the heat capacities of solid metals. Particularly a t  high tempera- 
tures, the heat of sublimation of a metal calculated by these equa- 
tions will be in considerable error unless accurate heat capacity 
data are employed. 

In  addition to the two rigorous methods just described for de- 
termining the heat of vaporization, there exist several empirical 
rules by means of which the heat of vaporization can be calcu- 
lated. The best known is Trouton’s rule, which states that the 
entropy of vaporization a t  the normal boiling point is the same 
for all substances. Actually the entropy of vaporization in- 
creases with the boiling point. Hildebrand (52) has restated the 
rule so as to eliminate this trend. Hildebrand’s rule may be 
stated as follows: the entropy of vaporization of all non-associat- 
ing liquids is the same at the temperatures a t  which the liquids 
give the same vapor concentrations. In  applying this rule to  
metals, the author has used mercury, zinc, or cadmium as refer- 
ence substances, since their vapor pressures have been well in- 
vestigated. 

The high chemical activities of most metals and the high tem- 
peratures necessary to obtain appreciable vapor pressures make 
accurate measurements difficult, and unless great precautions 
are taken in experimental procedure, the vapor pressures may not 
even be of the correct order of magnitude.8 It is therefore not 
surprising to find poor agreement in many cases between the 
results of different investigators. 

Calorimetric values of the heats of fusion 
are known for most metals. In many cases there is disagree- 
ment in the data of several investigators for a given metal. This 
is to be expected, since the high melting points of many metals 
and the ease of oxidation of the low melting metals make it diffi- 
cult to obtain accurate results. There are several methods of 
estimating the heat of fusion non-calorimetrically, e.g., by the 
time of crystallization of the melt. The results obtained are 

8 For a critical discussion of the sources of error involved in vapor pressure 

2. Heats of fusion. 

measurements, compare A. Smith and A. W. C. Menzies (56). 
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usually of a low order of accuracy, but they afford an estimation 
of a value for the heat of fusion when no other data are available. 

3. Heat capacities of metals in the gaseous, liquid, and crystalline 
states. Since almost no measurements have been made on the 
heat capacities of metallic vapors, the kinetic theory value 
(c,), = 5/2 R will be used for a monatomic vapor a t  all tempera- 
tures. The heat capacities of a few metals in the liquid state 
have been measured. Individual results for a given metal differ 
greatly, and with the exception of mercury no really reliable 
values are known. While it is not essential to have highly accu- 
rate heat capacity data for the purpose of calculating the heat of 
sublimation a t  298°K. when i t  is known a t  some other tempera- 
ture, it is important for the calculation of the entropy of a liquid. 
In  many cases the uncertainty in the value for the heat of vapori- 
zation calculated by means of equation 66 is due almost entirely 
to the error in the value of the heat capacity of the liquid. 

4. The  heat of sublimation of copper as  an example. As an 
illustration of the way in which the data were employed to obtain 
the heat of subljmation, copper will be considered in detail. The 
thermal data are summarized below. 

Melting point: 1083°C. 
Heat capacity of the liquid: 7.8 calories per degree, this being 

Umino the average value between the melting point and 1450°C. 
(57). 

Heat capacity of the solid: 

cP = 5.77 + 2.859.10-3t - 4.826*10-'t2* (70) 

4.96 + 3.114.10-3T - 4.826*10-7T2 
* t denotes "C. 

These equations, valid in the temperature range 0°C. to the melt- 
ing point, have been derived from the data of Umino (57)  on the 
heat evolved when a sample of copper is cooled from various 
temperatures to 0°C. 

cP = 5.78 + 2.017.10-3t - 8.255-10-7t2 (71) 

= 5.17 + 2.468.10-3T - 8.255.10-7T2 
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These equations, valid in the temperature range -25°C. to  
730"C., have been derived from the tabulated values at different 
temperatures of Eastman, Williams, and Young (49). 

946 946 
C p  = 8.254 - - 8.254 - ~ 

t + 373 T + 100 
This equation, valid from room temperature to the melting point, 
has been obtained by Maydel (55) from experimental data alone. 

Heat of fusion: 2670 f 270 calories per mole. Harteck (51). 
3175 calories per mole. Umino (57). 
2650 calories per mole. International 

Critical Tables, Vol. 11. This 
value has been derived from 
the results of Glaser (2650 
calories), Richards (2740 cal- 
ories), and Wust, Menthen, 
and Durrer (2610 calories). 

Heat of vaporization: 73.0 f 2 . 2  kilogram-calories per mole 
at the melting point. Har- 
teck (51). 

65.9 kilogram-calories per mole 
at 2200"K., from the vapor 
pressure equation given 
in International Critical 
Tables, Vol. 111. 

75.98 kilogram-calories per mole 
a t  2110°K.; vapor pressure 
measurements of Fischer 
and Grieger.9 

Heat of sublimation: 82.2  kilogram-calories per mole a t  298°K. 
Jones, Langmuir and MacKay 
(53). 

Inter- 
national Critical Tables, 
VOl. 111. 

8 . 1  calories per mole. Landolt- 

Entropy of the solid at 25°C. : 8.03 calories per degree. 

9 Unpublished data, 
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Bornstein Tables, 5th 
edition. 

From these data the heat of sublimation of copper may be cal- 

Change in heat content when 1 mole of solid copper is heated 

4730 calories, from heat capacity equation of Umino. 
4470 calories, from equation of Eastman, Williams, and 

4820 calories, from equation of Rlaydel. 
4670 calories, average. 

culated as follows: 

from 25°C. to 725°C. 

Young. 

Change in heat content when 1 mole of solid copper is heated 
from 725°C. to 1083°C. 

2840 calories, from equation of Umino. 
2690 calories, from equation of Maydel. 

The average is 2770 calories. Hence the change in heat con- 
tent when one mole of solid copper is heated from 25°C. to 
1083°C. (the melting point) is 4670 + 2770 = 7440 calories. 
Change in entropy when one mole of solid copper is heated 

7.967 calories per degree, from equation of Umino. 
7.612 calories per degree, from equation of Eastman, 

8.158 calories per degree, from equation of hlaydel. 
The average value is 7.912 calories per degree. 
Change in entropy when one mole of solid copper is heated 

2.417 calories per degree, from equation of Umino. 
2.285 calories per degree, from equation of Maydel. 

The average value is 2.351. Hence the change in entropy 
when one mole of solid copper is heated from 25°C. to the 
melting point is 7.912 + 2.351 = 10.26 calories per degree. 

The value for the heat of fusion given by Harteck is the mean of 
the most reliable published data. Umino's result is not very 
trustworthy, because of the small size of sample used and the 
errors inherent in the experimental procedure. The value given 
by the International Critical Tables agrees well with that of Har- 

from 298°K. to 1000°K. 

Williams, and Young. 

from 1000°K. to 1356°K. 

CHEXICAL REVIEWS, VOL. XI, SO. 1 
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teck. A mean value of 2.70 kilogram-calories will be adopted for 
the heat of fusion. 

The value for the heat of vaporization given by Harteck is de- 
rived from his own vapor pressure measurements as well as those 
of several other investigators. 

The vapor pressure equation given by the International Crit- 
ical Tables includes the data of many investigators. From this 
equation 65.9 kilogram-calories is the value of the heat of vapori- 
zation a t  2200°K. Taking 5/2 R for the heat capacity of the 
vapor and 8.3 calories per degree as the average value of the heat 
capacity of the liquid from the melting point to 2200"K., the heat 
of vaporization a t  the melting point is 65.9 + 2.5 = 68.4 kilogram- 
calories. 

The value for the heat of vaporization given by Fischer and 
Grieger is derived from their vapor pressure measurements in the 
temperature region 2167" to 2707°K. Using the same heat capac- 
ity values of liquid and vapor as in the previous case, the heat of 
vaporization at the melting point is 75.98 + 3.43 = 79.41 kilo- 
gram-calories. 

Using 5/2 R for the heat capacity of the vapor and the results 
obtained for the change in heat content when the solid is heated 
from 25°C. to the melting point, the heat of sublimation from the 
data of Jones, Langmuir, and McKay is 82.2 - 2.2 = 80.0 kilo- 
gram-calories a t  the melting point. Subtracting 2.70 kilogram- 
colories for the heat of fusion, the heat of vaporization is 77.3 
kilogram-calories. 

The entropy of solid copper a t  the melting point is 8.05 + 
10.26 = 18.31 calories per degree. The entropy change in fusion 
is 2700/1356 = 1.99 calories per degree, so that the entropy of 
the liquid at the melting point is 18.31 + 1.99 = 20.30 calories 
per degree. The entropy of the liquid a t  2490°K. is 20.30 + 8.3 
In Taking the vapor pressure of 
the liquid as 105.2 mm. a t  2490°K. (from the measurements of 
Fischer and Grieger), the entropy of the vapor a t  this temperature 
and pressure, calculated from the Sackur-Tetrode equation, is 
54.21 calories per degree. The entropy change in vaporization 
a t  2490°K. is therefore 28.87 calories per degree. The heat of 

= 25.34 calories per degree. 
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vaporization is 28.87.2490 = 71.9 kilogram-calories at 2490°K. 
and 71.9 + 3.8 = 75.7 kilogram-calories a t  the melting point. 

Using as a reference the vapor pressure equation for zinc deter- 
mined by Maier (54) from a critical review of the data, and taking 
105.2 mm. as the vapor pressure a t  2490”K., Hildebrand’s rule 
yields 74.69 kilogram-calories for the heat of vaporization at  this 
temperature and 78.5 kilogram-calories a t  the melting point. If 
1.16 X mm. be used for the vapor pressure a t  1420°K. (from 
the measurements of Harteck) , then Hildebrand’s rule yields 76.5 

TABLE 9 
Molal heat of vaporizat ion of copper at the melting point  

A H  

kg-cat. 
73.0 5 2 . 2  
79.41 
77.3 

68.4 

75.7 

78.5 

76.7 

AUTHOR 

Harteck 
Fischer and Grieger 
Jones, Langmuir, and 

McKay 

International Critical 
Tables 

METHOD 

Vapor pressure data 
Vapor pressure data  
Vapor pressure data derived from meas- 

urements of the rate of evaporation 
of the solid 

Vapor pressure data  

Entropy data and the Sackur-Tetrode 
equation 

Hildebrand’s rule (vapor pressure datum 
of Fischer and Greiger a t  2490’K.) 

Hildebrand’s rule (vapor pressure datum 
of Harteck at 1420°K.) 

kilogram-calories for the heat of vaporization at this temperature 
and 76.7 kilogram-calories a t  the melting point. 

Table 9 summarizes the various values for the heat of vapori- 
z a tion. 

The values of Harteck and of Fischer and Grieger should be 
given most weight. Although the results derived from the data of 
Jones, Langmuir, and McKay and from entropy considerations 
agree well with the others, they are not reliable, the former be- 
cause the measurements are not made under equilibrium condi- 
tions, the latter because of the uncertainty in the heat capacity of 
liquid copper. The results obtained with the aid of Hildebrand’s 
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rule serve as a useful check upon the other values. The value ob- 
tained from the International Critical Tables is doubtless in error, 
and will be given no weight. A weighted mean of 77.0 kilogram- 
calories will be adopted. The heat of sublimation at the melting 
point is therefore 79.7 kilogram-calories and at 25°C. it  is 81.9 
kilogram-calories. 

The procedure used in evaluating the heat of sublimation of 
copper has been employed for the other metals. For many metals 
such as sodium, potassium, cadmium, and mercury, the data are 
much more extensive and reliable than for copper; in other cases 
the data are very meagre and unreliable. In  general, the higher 
the melting and boiling points of a particular metal, the less reli- 
able will be the heat of sublimation. For many metals the heat 
capacity of the liquid has not been determined. In  these cases 
an estimated value of 7.5 was used, this being approximately the 
mean for many metals. The results of Maydel, in which the 
heat capacity is expressed as a function of the temperature by 
means of the equation of an equilateral hyperbola, have been found 
to be most useful, particularly when other data were lacking. 
In  evaluating the heat of vaporization, results of vapor pressure 
measurements were usually given most weight. Whenever the 
vapor pressure of a given metal at various temperatures was meas- 
ured by two or more investigators, the heat of vaporization was 
calculated from the results of each investigator and the heats 
of vaporization then averaged. A more satisfactory procedure 
would be to plot the vapor pressures obtained by each investi- 
gator on a single log p versus 1/T diagram and then to determine 
the value of AH from the best curve through all the points. The 
difference in the value of the heat of sublimation obtained by 
these two methods of evaluation is almost always smaller than 
the probable error in the measurements, so the simpler procedure 
is justified. 

Where reliable heat capacity data are available, the value of the 
heat of vaporization determined from entropy values has been 
given full weight. Usually, however, the heat capacity data of 
liquid metals are very unreliable; hence the heat of vaporization 
determined by this method is not considered to be accurate. 
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Where reliable vapor pressure data are available, it  is found that 
the value of the heat of vaporization determined from them agrees 
well with the value determined from Hildebrand's rule by a com- 
parison with mercury, zinc, or cadmium. For this reason the 
author has used Hildebrand's rule extensively to differentiate 
between widely discordant vapor pressure data for a given metal. 

Table 10 summarizes the data 
obtained for the metals.10 Column 2 gives the melting points, 
column 3 the heats of fusion, and column 4 the heats of vaporiza- 
tion a t  the melting point. The value of the heat of sublimation 
in column 5 is obtained by adding the values for the heat of 
vaporization and of fusion in columns 3 and 4. The heat of sub- 
limation a t  25°C. is given in column 6. Values for the change in 
heat content when one mole of metal is heated from O"K., to 
25°C. taken from Landolt-Bornstein, 5th edition, 2nd Ergan- 
xungsband, are given in column 7 .  These results enable the heat 
of sublimation a t  0°K. to be determined, values of which are 
given in column 8. Column 9 gives the values of the entropy of 
the solid at  25°C. All data are expressed in kilogram-calories per 
mole. 

5. Tabulation of thermal data. 

3. Ionization potentials of the elements 
The ionization potential of an atom is usually defined as the 

energy required to remove an electron from the atom. This defi- 
nition is ambiguous, for in an atom containing many electrons 
there will obviously be many ionization potentials corresponding 
to the removal of the various electrons. The ionization potential 
corresponding to the removal of the most loosely bound electron 
from the atom in its normal state to form an ion in its lowest 
energy state will be referred to in this paper as the first ionization 
potential. Similarly the ionization potential corresponding to the 
removal of the most loosely bound electron from the univalent ion 
to form a bivalent ion in its lowest energy state will be referred 

l o  Because of the very large number of data which have been employed in evalu- 
ating the quantities given in this table, references to  original papers have been 
omitted. In  most cases they are given in Landolt-Bornstein, 5th edition, 1st and 
2nd Erganzungsbande. An effort was made to  consider all data published prior 
t o  October, 1931. 
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Aluminum . . . .  
Antimony . . . .  
Arsenic . . . . . . .  
Barium . . . . . . .  
Beryllium . . . .  
Bismuth . . . . . .  
Cadmium . . . .  
Calcium . . . . . .  
Cesium . . . . . . .  
Chromium . . . .  
Cobalt . . . . . . .  
Copper . . . . . . .  
Gold . . . . . . . . .  
Iron . . . . . . . . . .  
Lead . . . . . . . . .  
Lithium . . . . . .  
Magnesium . . .  
Manganese . . .  
hlercury . . . . . .  
Molybdenum . 
Nickel . . . . . . . .  
Palladium . . . .  
Platinum . . . . .  
Potassium . . . .  
Rubidium . . . .  
Selenium . . . . .  
Silicon . . . . . . .  
Silver . . . . . . . .  
Sodium . . . . . . .  
Strontium., . . 
Tellurium . . . .  
Thallium . . . . .  
Tin . . . . . . . . . .  
Tungsten . . . . .  
Zinc . . . . . . . . . .  
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"K . 
932 
903 

1090* 
931 

1558 
544 
595 

1083 
299 

1870 
1762 
1356 
1336 
1803 
600 
459 
923 

1530 
2 3 4 . ~  

2895 
1725 
1822.1 
2046.' 
336. I 
311 
490 

1688 
1234 
371 . 

1025 
725 
575 
505 

3655 
692 

TABLE 10 
Thermal  data for metals 

52 
27.21 
47.5 
19.11 
75.9 
85.9 
S1.9 
91 
93.8 
47.4 
38.3 
36.5 
74.2 
15.22 

85.0 
155 

118 
125 
21.65 
19.92 
13.4t 
85 
67 
26.00 
39.7 
16f 
45.6 
78 

210 
31.59 

NELT- 

POINT 
NETAL I INQ 

1.492 27.22 
1.379 47.4 

1.181 81.6 
1.449 91 

1.645 47.6 

1.235 36.3 

2.242 15.36: 
1.088 155 

1.380 125 
1.693 21.86 

0.750 84 
1.365 67 
1.548 26.07 

1.610 45.7 
1.540 78 
1.220 210 
1.347 31.46 

AHF 

2.35 
4.5 
5.60 
1.40 
3.2 
2.65 
1.50 
3.14 
0.51: 
3.65 
3.95 
2.70 
3.15 
3.68 
1.20 
0.111 
1.70 
3.56 
0.551 
8.38 
4.25 
3.65 
6.26 
0.57( 
0.55: 
1.30 
3.71 
2.60 
0.63( 
1 . 4  
0.93 
1.47 
1.66 
. 1 . 2  
1.74 

iH,(m.p.: 

52 
43 
23.2 
46.0 

49 
25.25 
42.6 
18.60 
67.0 
77.5 
77.0 
85 
76.5 
46.0 
38.0 
33.6 
65.0 
14.711 

77.0 
140 

110 
116 
21.00 
19.35 
10.7f 
79 
63 
25.21 
36.2 
14$ 
43.15 
75 

186 
29.10 

iH,(m.p.:  

54 
48 
28.8 
47.4 

52 
26.75 
45.7 
19.11 
70.7 
81.5 
79.7 
88 
80.2 
47.2 
38.1 
35.3 
68.6 
15.26; 

81.3 
148 

114 
121 
21.57 
19.90 
12 . o t  
83 
66 
25.84 
37.6 
15t 
44.6 
77 

197 
30.84 

30.4 ii 1.0571 55 

49.1 I I 
6.62 

12.4 
8 .4  

13.7) 
2 . 1  

13.95 
12.34 
9.95 

13.6 
5 .5  
6.8 
8.05 

11.40 
6.49 

15.59 
7.6 
8 . 1  
7 . 3  

18.28 
6.83 
7.24 
8.9 
9.98 

15.20 
12.3) 
12.1) 
4.35 

10.04 
12.04 
12.4) 
13.5) 
14.9 
12.5 
8.1 
9.94 
- 

* Vapor pressure 35.8 atmospheres . 
t To give 0.5 moles of Sez vapor . 
$ To give 0.5 moles of Te2 vapor . 
$ Derived from the unpublished vapor pressure measurements of Fischer and 

Grieger . 
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to as the second ionization potential, and so on for the higher 
ionization potentials. Obviously the energy required to remove 
n electrons from a normal atom will be the sum of the first n 
ionization potentials. 

Ionization potentials 
can be obtained with great accuracy from speetroscopic data. 
They can also be obtained, but usually less accurately, from elec- 
tron-collision experiments.11 Many spectroscopic determinations 
of ionization potentials have been published recently. All the 
available values, expressed in volts, are collected in table 11, which 
will be used extensively in the thermochemical calculations given 
in the following sections. Where references are not given, the 
values have been taken from Landolt-Bornstein, 5th edition, 2nd 
Erganzungsband. Much less extensive tables of ionization po- 
tentials have been published by Noyes and Beckman (112), 
Rabinowitch and Thilo (119), and Russell (126). 

2. Theoretical values of ionization potentials. Recently ioniza- 
tion potentials for helium and helium-like ions have been calcu- 
lated theoretically by Hylleraas (88) with the use of the quantum 
mechanics. Table 12 shows that there is complete agreement 
between these values and the experimental ones. 

Milne (109) has derived an approximate theoretical equation 
for the total energy of binding of all the electrons in an atom as a 
function of the atomic number by the use of the Thomas-Fermi 
(128) treatment, in which the electrons in an atom are assumed to 
behave as a completely degenerate gas obeying the Fermi-Dirac 
statistics. Mihe’s equation is 

ZI = 17 N7’3 volts (73) 

X being the atomic number and 21 being the total energy of bind- 
ing of the electrons, that is, the sum of the successive ionization 
potentials. The constant 17 is not considered to be accurate since 
it occurs as the difference of two large numbers, The ionization 

11 For a detailed systematic account of the earlier developments, compare 
“Critical Potentials,” by Compton and Mohler, Bulletin of the National Research 
Council; also the monograph, “Anregung von Quantensprungen durch Stosse,” by 
J. Frank and P. Jordan, Springer, Berlin (1926). 

1,  Tabulation of ionization potentials. 
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BUBSTANCE 

He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Li+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Be++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
B+++. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C++++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

potentials of the first eight elements can be used to test the validity 
of Milne’s equation. In  table 13 the constant in Milne’s equa- 
tion is calculated for these elements. The second column gives the 
sum of the successive ionization potentials for each element, and 
the third column the values of iV7l3. In  the fourth column the 
ratios zI/LV’/~ are given; these should be equal to the constant in 
Milne’s equation. Except in the case of hydrogen, the values are 
remarkably constant. The pronounced deviation shown by 
hydrogen is not surprising, since the treatment given by Thomas 
and Fermi should hold only for atoms containing many electrons. 
The values of the constant should therefore approach an asympto- 
tic value as the atomic number increases, as it seems to be doing. 

TABLE 12 
Theoretical and experimental  values of i o n i z a t i o n  potent ials  

I (theoretical) I (experimental) 

24.469 24.4672 
75.278 75.282 A0.012 

153,149 153.10 10.1 
258.09 258.1 10.2 
390.12 389.9 A 0 . 4  

, 

4. Heats of formation at 25°C. of monatomic gases of the electro- 
negative elements 

In  applications of the Born-Haber cycle it is desired to know the 
heat of formation of the monatomic gas of the electronegative ele- 
ment from the standard state at  25OC. Many of the electronega- 
tive elements exist as diatomic gases at room temperature so that 
the heats of dissociation are desired. For elements such as iodine, 
bromine, sulfur, etc., which are not diatomic gases at room 
temperature, the heat of vaporization or sublimation as well as 
the heat of dissociation must be taken into account. 

The heat of dissociation of a diatomic gas can be determined by 
either chemical or spectroscopic methods. In  many cases the 
spectroscopic values are the more accurate and are employed in 
future considerations in this paper. Hylleraas (142) has calcu- 
lated the heat of dissociation of hydrogen by the perturbation 
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methods of quantum mechanics, obtaining 4.37 =t 0.12 volt-elec- 
trons as compared with the best experimental value 4.465 =t 0.04 
volt-electrons (147). Since the experimental value is the more 
reliable, it  will be adopted in our calculations. 

1. TabuZation of Data. Table 14 summarizes the data, all 
quantities being expressed in kilogram-calories per gram-atom. 
In the A H ,  column the heats of dissociation at 0°K. of the dia- 
tomic gases are tabulated. With the exception of that for iodine, 
the values are taken from the compilation by Sponer (149). In  
the V ,  S ,  and D columns the following quantities are tabulated: 
the heat of vaporization a t  25°C. of bromine to form diatomic 
gas; the heat of sublimation a t  25°C. of the element to form 

TABLE 13 
T h e  constant in Mi lne ' s  equation, calculated for the first eight elements 

ELEYEINT 

H . . . . . . . . . . . . . . . . . . . . . . . . . . .  
He . . . . . . . . . . . . . . . . . . . . . . . . .  
Li . . . . . . . . . . . . . . . . . . . . . . . . . .  
Be. . . . . . . . . . . . . . . . . . . . . . . . . .  
B . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c . . . . . . . . . . . . . . . . . . . . . . . . . . .  
x . . . . . . . . . . . . . . . . . . . . . . . . . .  
0. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z I  

volts 
13.530 
78,6184 

202.510 
397.381 
666.16 

1024.287 
1471.748 
2026.032 

1 

5.040 
12.980 
25.398 
42.749 
65.416 
93.734 

128 

13.530 
15.600 
15.602 
15.646 
15.583 
15.658 
15.701 
15.828 

diatomic gas; and the heat of formation at 25°C. of the 
monatomic gas. The last quantity is obtained by adding the 
heat of vaporization or sublimation to the heat of dissociation. 
The heat of dissociation at  25°C. is obtained from the value a t  

0°K. by adding the term Ac,dT, where Ac, denotes the 

difference in the heat capacity between one gram-atom of the 
monatomic gas and one-half mole of the diatomic gas. For hy- 
drogen and iodine the values of the integrals given by Giauque 
(137, 138) have been used; in all other cases the kinetic theory 
values of the heat capacities of the gases are employed, so that the 
heat of dissociation at  25°C. is 3/4 RT = 0.444 kilogram-calorie 

298 
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D 
kg-cals. 
51.94 
3 2 . 2  
28.87 
26.88 
25.413 
59 .2  
6 6 . 6  
55 
51 

104.3 

larger than at 0°K. The heats of sublimation of selenium and 
tellurium are taken from table 10. 

In  applications of the Born-Haber cycle the heat of formation 
of the monatomic gas from the standard state a t  25OC. will be 
denoted by D and for convenience will be referred to as “the heat 
of dissociation,” although it is only for elements which exist as 
diatomic gases a t  room temperature that D actually represents the 
heat of dissociation. 

5. Electron afinit ies of the electronegative elements 
In  order to obtain the crystal energy from experimental data to 

be compared with the theoretical value, Born devised the thermo- 

TABLE 14 
Heats  of format ion  at 95°C. of monatomic gases of electronegative elements 

REFERENCES 

(147) 
(150) 
(135, 145) 
(134, 139, 143) 
(133, 138) 
(136, 140) 
(141 143, 146) 
(148) 
(148) 
(132, 144) 

EL E 31 EN T 

Hydrogen . . . . . . . . . . . . .  
Fluorine . . . . . . . . . . . . . .  
Chlorine . . . . . . . . . . . . . .  
Bromine . . . . . . . . . . . . . .  
Iodine. . . . . . . . . . . . . . . .  
Oxygen . . . . . . . . . . . . . . .  
Sulfur, . . . . . . . . . . . . . . .  
Selenium. . . . . . . . . . . . . .  
Tellurium. . . . . . . . . . . . .  
Sitrogen. . . . . . . . . . . . . .  

A Ho 

kg-cals. 
51.47 1 0 . 4 6  
31.65 & 0 . 3  
28.43 ztO.09 
22.61 1 0 . 0 9  
17.694 zt0.023 
5 8 . 7  1 0 . 1  
5 1 . 3  1 0 . 1  
4 1 . 5  
3 4 . 5  
103.7 1 3 . 0  

V 

kg-cals. 

3.83  

- 

S 

kg-cals. 
- 

7.43s 

14,84 
13 .4  
16 

chemical cycle to which frequent reference has been made. The 
electron affinity of the electro-negative element is one of the 
thermal quantities which enter into the cycle. Except for hydro- 
gen, the electron affinities are unknown or are known with low 
accuracy, although many attempts have been made to determine 
them spectroscopically. Soon after the formulation of the Born 
theory, Frank (155) believed he found in the emission spectrum 
of iodine vapor a continuous band which could be attributed to 
the process of formation of iodide ion from an atom and a free 
electron. If this were the true origin of the band, then the energy 
corresponding to the edge on the long wave length side would be 
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just the electron affinity of iodine. However, later experiments 
showed that this band has a different origin. Many other inves- 
tigators believed they had found electron-affinity spectra, but 
Oldenberg (160) has pointed out that all these bands have a differ- 
ent origin. Recently von Angerer and Muller (151) reported 
that they had actually located these bands in the spectra of the 
alkali halide vapors, but unfortunately their conclusions are not 
free from objections and therefore their results too cannot be con- 
sidered to be reliable. 

Many attempts have been 
made to calculate the electron affinity of hydrogen by the applica- 
tion of the Born cycle to the alkali hydrides (158, 159, 161). 
The values of the electron affinity calculated in this way were 
always unreliable because of the uncertainty in the crystal ener- 
gies involved, arising from lack of knowledge of the lattice con- 
stants and compressibilities of the alkali hydride crystals. 

Hylleraas (156, 157) recently devised a method of calculating 
the electron affinity of hydrogen by means of the quantum 
mechanics, obtaining the value 16.3 kilogram-calories. Using 
this same method of calculation, Bethe (154) obtained 17 f 1 
kilogram-calories, and Starodubrovski (162) 16.40 f 0.03 kilo- 
gram-calories. 

2. Electron afinities of free radicals. Bent (152, 153) has 
recently determined the electron affinities of several gaseous tri- 
arylmethyl compounds. The free energy of the reaction whereby 
sodium is added to the free radical to give the ion in ether solution 
was determined, These results were then combined with free 
energy values of other reactions (some of which were estimated) 
to obtain electron affinities. Table 15 gives the results. These 
results are interesting in comparison with the electron affinities of 
the halogens and CN, tabulated in tables 17 and 19. 

The first application 
of the Born cycle that we shall make will be the calculation of the 
electron affinities of several elements, given in the next section. 
For convenience the values obtained are given in table 16, to- 
gether with those for hydrogen and triphenylmethyl. 

The relative values for the electron affinities of the halogens are 

1. The electron afznity of hydrogen. 

3. Tabulation of electron a f i n i f y  values. 
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Triphenylmethyl.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Diphenylbiphenylmethyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Diphenyl-a-naphthylmethyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phenyl-a-naphythylbiphenylmethyl ........................... 

in accord with their known chemical properties. The value of the 
electron affinity of the CN molecule is in agreement with the 
known similarities in the chemical properties of cyanides and hal- 
ides. The negative values for oxygen, sulfur, and selenium are 
not surprising, for it is to be remembered that the process con- 
sidered is the formation of bivalent ions, which involves the bind- 
ing of two electrons to the atom. 

kg-cals. per mole 
59 i: 5 
60 
60 
60 

TABLE 15 
Electron a f in i t ies  of gaseous tr iarylmethyl  radicals at O'K. 

IOBBTANCE I E  

TABLE 16 
Electron a f in i t ies  of electronegative atoms and molecules 

SUBSTANCE 

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Br . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E I REFERENCE 

kg-cals. per mole 
16.40 1 0 . 0 3  
98.5 
92.5 
87.1 
79.2 
74.1 
59 * 5  

- 168 
-79.4 
- 97 

(162) 
Table 17 
Table 17 
Table 17 
Table 17 
Table 19 .- 
(152) 
Table 18 
Table 18 
Table 18 

IV. APPLICATIONS O F  THE BORN-HABER THERMOCHEMICAL 
CYCLE 

1. Electron afinities of the halogens 
We shall first apply the Born-Haber cycle to the evaluation of 

the electron affinities of the halogens. Although the cycle may be 
applied to any halide to determine the electron affinity of the cor- 
responding halogen, we shall use only the alkali halides, since they 
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238.9 
213.8 
189.2 
180.6 
171.6 

192.1 
179.2 
163.2 
157.7 
147.7 

181.9 
170.5 
156.6 
151.3 
142.3 

169.5 
159.6 
147.8 
143.0 
134.9 

correspond most closely to the “pure ionic” type of crystal. All 
the alkali halides except cesium chloride, cesium bromide, and 
cesium iodide have the sodium chloride structure, these three 
crystals having the cesium chloride structure. Table 17 gives 
the necessary data and the electron affinity calculated by applica- 
tion of the cycle to each crystal. Column 2 contains values of 

TABLE 17 
Electron af ini t ies  of the halogens calculated from the Born-Haber cycle 

C O U Q I  ---- 
240.1 144.7 123.8 
215.0 136.6 118.0 
190.4 134.5 99.6 
181.8 132.8 95.9 
172.8 131.5 89.4 

193.3 97.5123.8 
180.4 98.2 118.0 
164.4 104.9 99.6 
158.9 104.9 95.9 
148.9 106.6 89.4 

183.1 83.7123.8 
171.7 86.3 118.0 
157.8 94.2 99.6 
152.5 96.1 95.9 
143.5 97.5 89.4 

170.7 65.0 123.8 
160.8 69.5 118.0 
149.0 78.9 99.6 
144.2 80.8 95.9 
136.1 83.9 89.4 

CRYSTAL 

LiF,  . . . . . . . . . . .  
NaF . . . . . . . . . . .  
KF . . . . . . . . . . .  
RbF . . . . . . . . . . .  
CsF . . . . . . . . . . .  

LiCl . . . . . . . . . . .  
XaCl . . . . . . . . . .  
KC1. . . . . . . . . . .  
RbCl . . . . . . . . . .  
CSCl, . . . . . . . . . .  

LiBr. . . . . . . . . . .  
NaBr . . . . . . . . . .  
KBr . . . . . . . . . . .  
RbBr . . . . . . . . . .  
CsBr . . . . . . . . . .  

LiI . . . . . . . . . . . .  
KaI. . . . . . . . . . .  
K I . ,  . . . . . . . . . . .  
RbI  . . . . . . . . . . .  
CSI. . . . . . . . . . . .  

D 

32.2 
32.2 
32.2 
32.2 
32.2 

E -___ 
98.9 
97.8 
97.6 
99.0 
99.4 

____ 
4.02 
4.619 
5.33 
5.63 
6.008 

5.143 

S 

6 .0  
7.0 
8.0 
8 .5  
9 .5  

7.0 

38.3 
26.0 
21.7 
19.9 
19.1 

38.3 
26.0 
21.7 
19.9 
19.1 

38.3 
26.0 
21.7 
19.9 
19.1 

38.3 
26.0 
21.7 
19.9 
19.1 

6.277 
6.54 
4.113 

5.490 
5.962 
6.586 
6.854 
4.287 

6.000 
6.462 
7.052 
7.325 
4.56 

9.0 
9 .5  

10.5 

7 .5  
8 .5  
9 .5  

10.0 
11.0 

8.5 
9 .5  

10.5 
11.0 
12.0 

the lattice constant, ao, taken from “Strukturbericht.”12 Values 
of n, the repulsive exponent in the Born potential expression, have 
been obtained in accordance with table 7 ,  as previously described, 
and are given in column 3. Values of Ua, the crystal energy, cal- 

12 EWALD, P. P., AND HERMANN, C.: Strukturbericht (177). Values of all 
lattice constants used in this paper will be taken from this book, unless otherwise 
specified. 

26.9 
26.9 
26.9 
26.9 
26.9 
mean 
25.4 
25.4 
25.4 
25.4 
25.4 

89.6 
85.6 
84.6 
86.3 
89.4 

= 87.1 
81.8 
78.1 
76.6 
77.8 
81.7 
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culated in each case from ao, n, and the appropriate Madelung 
constant by means of equation 11, are given in column 4. Col- 
umn 5 gives the changes in heat content when the crystal is formed 
out of dispersed ions. These are obtained in each case by adding 
to the crystal energy the energy due to the pressure-volume prod- 
ucts.13 Column 6 gives the values of the chemical heats of 
formation, column 7 the values of the first ionization potential 
of the alkali metals, obtained from table I1 by multiplying the 
value in volts by 23.054, column 8 the heats of sublimation of the 
metals, and column 9 the value of the heat of dissociation of the 
halogen. Finally, in the last column of the table is given the 
value of the electron affinity of the halogen, obtained by the addi- 
tion of the quantities in the preceding five columns. 

I t  is seen that the values for fluorine are consistent to better 
than 2 per cent, although the absolute error may be greater than 
this. Since the electron affinity is obtained by the addition of 
several quentities, the absolute rather than the percentage errors 
of these quantities determine the error in the value of the electron 
affinity. The crystal energy varies inversely with the lattice 
constant, so that a small error in the value of the lattice constant 
produces a fairly large absolute error in the crystal energy. For 
chlorine, bromine, and iodine, i t  is seen that the electron affinity 
as determined from the lithium and cesium salts is about 4 per 
cent higher than when determined from the sodium, potassium, 
and rubidium salts. This disagreement is probably due mainly 
to the error in the crystal energies, either the crystal energies of 
the lithium and cesium salts being approximately 2 per cent too 
low, or those of the sodium, potassium, and rubidium salts approx- 
imately 2 per cent too high. From the Born cycle alone it is not 
possible to  say which of these two possibilities is correct, so that 
there is an uncertainty in the value of all these crystal energies of 
a t  least 2 per cent. The crystal energies of lithium chloride, lith- 
ium bromide, and lithium iodide may be in error because of some 

13 Neglecting the volume of the crystal compared to  the volume of the dis- 
persed ions, and considering the perfect gas equation of state to  be valid for each 
type of ion, the energy due to  the pressure-volume products is nRT, where n de- 
notes the number of moles of ions necessary to  form one mole of crystal. 
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unknown effect of the small values of the radius ratios of these 
salts. Since cesium chloride, cesium bromide, and cesium iodide 
have the cesium chloride structure, the disagreement in the values 
of the electron affinities calculated from these salts compared to 
the values calculated from other salts may be due to this cause. 
Pauling (169) has indeed pointed out that on the basis of the Born 
equation equilibrium between the cesium chloride and the sod- 
ium chloride structure should occur when the ratio of the anion- 
cation distance in cesium chloride to that in sodium chloride is 
1.009, whereas equilibrium actually occurs for values of this ratio 
differing from this by 2 to 4 per cent, which shows that the values 
of crystal energies of sodium chloride and cesium chloride struc- 
tures calculated by the Born equation are inaccurate to this 
extent. 

The values obtained in this paper for the electron affinities of 
the halogens do not differ greatly from those given originally by 
Born or from those of later investigators. 

The data 
on the alkaline earth oxides, sulfides, and selenides, all of which 
have the sodium chloride structure, have been employed to cal- 
culate the electron affinities of oxygen, sulfur, and selenium. , 

Table 18 summarizes the results. In  column 7 the sum of the 
first and second ionization potentials, giving the energy required 
to remove two electrons from the metal, is recorded. The beryl- 
lium salts were omitted because of lack of data which would 
permit an evaluation of the heat of sublimation, and the tellurides 
because of lack of data concerning the chemical heats of formation 
of these salts. 

For oxygen, sulfur, and selenium the electron affinity is the 
energy a t  0°K. required to remove two electrons from the gaseous 
ion. The negative values signify that the formation of the ion 
from the atom and electrons is an endothermic process. This 
is seen not to be surprising when the process is considered in steps. 
The first electron may attach itself to the neutral atom with the 
evolution of energy, but in order to attach a second electron to the 
univalent negative ion, work must be done against the electro- 
static forces of repulsion of the negative ion and the electron. 
The individual values of the electron afinities for a given atom 

2. Electron afinities of oxygen, sulfur, and selenium. 
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QQ 

4.208 
4.802 
5.15 
5.53 

5.190 
5.686 
6.01 
6.37 

5.912 
6.23 
6.59 

differ considerably from one another, leading to large probable 
errors in the mean values. Except for the heat of dissociation of 
Se2 vapor, the thermal data are fairly reliable, so that the disagree- 
ment in the electron affinities may be attributed mainly to the 
error in the values of the crystal energies. Since the oxides, sul- 
fides, and selenides of the alkaline earth metals are composed of 
divalent ions, the crystal energy is approximately four times as 
large as for an alkali halide with the same lattice constant, and so 

n __- 
7.0  
8 .0  
8 . 5  
9 .5  

8 .0  
9.0 
9 .5  

10.5 

9 . 5  
10.0 
11.0 

TABLE 18 
Electron afinities of oxygen, sulfur, and selenium 

59.2 
59.2 
59.2 
59.2 
mean = 
66.6 
66.6 
66.6 
66.6 

CRTSTAL 

-178 
-171 
-167 
-157 
-168 
-72.4 
-80.8 
-84.3 
-80.2 

RIgO. . . . . . . . . . 
CaO . . . . . . . . . . 
SrO. . . . . , . . . . . 
BaO . . . . . . . . . . 

LIgS . . . . . . . . . . 
Cas .  . . . . . . . . . 
SrS . . . . . . . . . . . 
Bas . .  . . . . . . , . , 

Case .  . . . . . . . . 
SrSe . . . . . . . . . , 
Base. . . . . . . . . . 

745.8 

777.1 
720.6 
686.2 
654.7 

697.6 
665.9' 
635.9 

747.0 133 349.0 49.1 

778.3 82.2 520.6 36.5 
721.8 114 412.9 47.5 
687.4 113 383.8 39.7 
655.9 111 349.0 49.1 

698.8 88.4 412.9 47.5 
667.1 90.1 383.8 39.7 
637.1 88.21 349.0 49.1 

I 
the absolute error in the crystal energy is approximately four 
times as great as in the case of the alkali halides. 

3. The electron afinity of gaseous CX 
The electron afinity of gaseous CN can be obtained from 

the data on sodium cyanide and potassium cyanide crystals. 
Wyckoff (172) has pointed out that according to Pauling's theory 
of the rotation of molecules in crystals (170) the CN- ions in 
alkali cyanides are probably rotating and therefore behave as 
spherically symmetrical ions. Sodium cyanide, potassium cy- 
anide, and rubidium cyanide have the sodium chloride structure, 
while cesium cyanide has the cesium chloride structure. Table 19 
gives the pertinent data for these crystals. 
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N a C N . .  . . . . . . . . . . .  
KCN . . . . . . . . . . . . . .  
RbCN.  . . . . . . . . . . . .  
CsCK.. . . . . . . . . . . .  

The heat of dissociation of cyanogen into CN gas is just the 
energy of the C-C bond; the value used is an unpublished one 
calculated by Pauling. The lattice constants have been deter- 
mined by Natta and Passerini (168). The lack of information 
on the heats of formation of rubidium cyanide and of cesium 
cyanide prevents the calculation of the electron affinity of CN 
from these two salts. 

The agreement in the values for the electron affinity of CN ob- 
tained from sodium cyanide and potassium cyanide is evidence in 
favor of the assumption that the CN- ions in these crystals are 
rotating. 

--------- 
5.83  7 . 0  169.4 170.6 26 .0  118.0 58.3  43 .8  75 .5  
6.51 8.0 154.9 156.1 21.7 99 .6  6 3 . 6  43.8 72 .6  
6 . 8 2  8 . 5  149.1 150.3 19.9 95 .9  43 .8  
4 . 2 5  9 . 5  141.3 142.5 19.1 8 9 . 4  43 .8  

N a C N . .  . . . . . . . . . . .  
KCN . . . . . . . . . . . . . .  
RbCN.  . . . . . . . . . . . .  
CsCK.. . . . . . . . . . . .  

5.83  7 . 0  169.4 170.6 26 .0  118.0 58.3  43 .8  75 .5  
6.51 8.0 154.9 156.1 21.7 99 .6  6 3 . 6  43.8 72 .6  
6 . 8 2  8 . 5  149.1 150.3 19.9 95 .9  43 .8  
4 . 2 5  9 . 5  141.3 142.5 19.1 8 9 . 4  43 .8  

* AHz9a for the reaction [MCNI = [MI + 4 (CZXZ). 

4. The proton afinity of ammonia 
It was pointed out by Grimm (164) that the crystal energies of 

the ammonium halides and the electron affinities of the halogens 
provide a method of calculating the proton affinity of ammonia, 
that  is, the energy change for the reaction 

The cycle used in the calculation is shown below.14 
("3 = + (H+) 

U [NHaXl -+ NH: + X- 

/- QNH4X 'L P", 
t Nz + 2 Hz + 3 X, NH:, + H+ + X- 

/ 

l4  X denotes any halogen. All substances except the KH4X compounds are 
gases. 



CRYSTAL ENERGIES OF IOKIC COMPOUKDS 151 

The proton affinity of ammonia at 0°K. is given by the relation 
5 
2 P N H l  = U + QNH4X - + D, + + D, - EX - - RT 

in which the symbols have the following significance : 
U = lattice energy of an ammonium halide, 
&NH4X = chemical heat of formation of an ammonium halide, 
QNHs = chemical heat of formation of ammonia, 
DH = heat of dissociation of hydrogen, 

CRYSTAL 

S H 4 F . .  . . . . . . . . . . . . . . . . . . . . .  
Ir"aC1. . . . . . . . . . . . . . . . . . . . . .  
lrjH4Br.. . . . . . . . . . . . . . . . . . . . .  
",I.. . . . . . . . . . . . . . . . . . . . . . .  

TO STRUCTURE a, n - ~ -  
Wurtzite 2.63 7 .0  
CSCl 3.86 8 .0  
CsCl 4 05 8 .5  
NaCl 7.24 9 .5  

TABLE 21 
Proton aflnity o j  ammonia 

UO 

176.3 
152.1 
146.2 
142.4 

L' . . . . . . . . . . . . . . .  
Q N H ~ X .  . . . . . . . . . . . . . . . . . . . .  
Q?;H,, . . . . . . . . . . . . . . . . . . . . . .  
DH. . . . . . . . . . . . . . . . . . . . . . . . .  
I H  . . . . . . . . . . . . . . . . . . . . . . . . . .  
Dx, . . . . . . . . . . . . . . . . . . . . . . . .  
E,. . . . . . . . . . . . . . . . . . . . . . . . .  
~ R T  . . . . . . . . . . . . . . . . . . . . . . . .  

Plr'Hl . . . . . . . . . . . . . . . . . . . . . . .  

U 

177.5 
153.3 
147.4 
143.6 

-__ 

"IF 

177.5 
111.9 
10.9 
52.0 

311.9 
32.2 
98.5 
1 . 5  

221.0 

NHiCl 

153.3 
75.1 
10.9 
52.0 

311.9 
28.2 
92.5 

1 . 5  

209.0 

NHiBr 

147.4 
64.7 
10.9 
52.0 

311.9 
26.9 
87.1 

1 . 5  

208.6 

143.6 
48.6 
10.9 
52.0 

311.9 
25.4 
79.2 

1 . 5  

202.7 

I H  = ionization potential of hydrogen, 
D, = heat of dissociation of a halogen molecule, 
Ex = electron affinity of a halogen, and 
P N H s  = proton affinity of ammonia. 

Table 20 gives the crystal energies of the ammonium halides, 
and table 21 the thermal data required. The mean of the values 
of the proton affinity of ammonia from ammonium chloride, 
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ammonium bromide, and ammonium iodide is 206.8 kilogram- 
calories. 

It is interesting to discuss the differences in the values of the 
proton affinity calculated from the various ammonium halides. 
The agreement to within 0.2 per cent of the values from ammo- 
nium chloride and ammonium bromide is of course accidental, but 
it does indicate the consistency of the data. The lower value cal- 
culated from ammonium iodide is consistent with the discrepancy 
of the electron affinities calculated from the cesium and sodium 
chloride type of crystals. The high value of the proton affinity 
from ammonium fluoride is surprising, but may be explained in the 
following way. Pauling has pointed out in his lectures that the 
unexpected occurrence of the wurtzite structure for ammonium 
fluoride is probably due to the formation of hydrogen bonds. 
The formation of these bonds (non-rotating ammonium ion) 
causes the crystal energy to be different from the value given in 
the table and hence causes a corresponding difference in the value 
obtained for the proton affinity. 

5. Crystal energies of binary compounds of the halogens, oxygen, etc. 
The electron affinities of the halogens, obtained from the alkali 

halides, and of oxygen, sulfur, and selenium, obtained from the 
alkaline earth salts, will now be employed in conjunction with 
other thermal data to calculate the crystal energies for all binary 
salts for which data are available, and a comparison will be made 
of the values obtained with those calculated from the Born equa- 
tion. Tables 22 and 23 summarize the results for the halides and 
for the oxides. sulfides, and selenides. 

In  fifteen of the fifty crystals, the observed and calculated values 
of the crystal energy agree to within 2 per cent. This agreement 
supports but does not prove the assignment of an extreme ionic 
structure to these crystals. On the other hand pronounced dis- 
agreement between theoretical and experimental values does 
indicate that the salt is not composed purely of spherically sym- 
metrical ions, but that the bonds probably have to some extent 
the character of electron-pair bonds. This would be expected 
to  cause A = Uexp - Utheor to be positive, in agreement with the 
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results given in the table. (The large negative value found for 
aluminum oxide is not significant, since the crystal energy was 
calculated by using the Madelung constant for the ideally coordi- 
nated structure whereas the actual structure departs considerably 
from it.) Most of the fluorides and oxides seem to have an ionic 
structure, the fluorides of silver, nickel, and cadmium and the 
oxides of copper, silver, cadmium, lead, and tin being pronounced 
exceptions. On the other hand, sodium sulfide alone of the sul- 
fides and selenides can be considered as ionic. Of the halogens 
other than the fluorides, only SrCL can be of the extreme ionic 
type, The deviations shown in the series AgF, AgC1, AgBr, AgI 
and CuC1, CuBr, and CUI increase in the order given, indicating 
that the ion-forming tendency of the halogens falls off in the same 
way as the electron affinity. The thallous halides and the iodides 
of cadmium and lead are also seen not to be extreme ionic crystals. 

The general conclusion which can be drawn from the evidence 
provided by crystal energy considerations is that the halides, 
oxides, and sulfides of the alkali and alkaline earth metals and 
many fluorides and oxides of other metals are probably essentially 
ionic, whereas the sulfides, selenides, chlorides, bromides, and 
iodides of eighteen-shell atoms are not essentially ionic. 

6. Crystal energies of compounds with the perovskite structure 
As an example of the application of the Born-Haber cycle to 

complex crystals, the energies of several crystals having the 
perovskite structure have been calculated.1~ Table 24 contains 
the calculated crystal energies, and table 25 the crystal energies 
obtained by means of the cycle, according to the following 
equation :I6 

uexp = QXx + QNX2 + I ,  + 8, + I ,  + s, + 3 D, - 3 Ex (74) 

Heats of formation of these compounds are not known; we have 
assumed tentatively that the heat of formation of KMgF3 is the 
sum of the heats of formation of K F  and hIgF2, and similarly for 

Is The cubic unit of the perovskite structure contains one molecule, KMgF3, 

l6 The subscripts M and N denote univalent and divalent metals respectively. 
say, with K +  a t  0, 0,O; M g + +  a t  3, +, 3; 3 F- a t  3, f, 0; +, 0,;; 0, 4, 4. 
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KMgFs.. . . . . . . . . . . . . . . . . . . .  
KKiF3 ...................... 
KZnF3 ...................... 
CsCdC13. . . . . . . . . . . . . . . . . . . .  
CsHgClr .................... 
CaSnOs ..................... 

the other compounds. For KMgF 3 the theoretical crystal energy 
is greater than the experimental value. This difference may, 
however, be just the heat of formation from KF and MgF2. The 
difference of more than 10 per cent in the theoretical and experi- 
mental values of the crystal energy of CsHgCl indicates that  this 
compound is not strongly ionic, for it is very improbable that the 

TABLE 24 
Theoretical crystal energies of seceral compounds of the perovskite structure 

CRYSTAL 1 aQ I rl I UO I u 

4.00 
4.008 
4.05 
5.20 
5.44 
3.92 

~ 

Qhlx. .................... 
QNX ,.., . . . . . . . . . . . . . . . . . .  
Z i f . .  ...................... 
SM. . . . . . . . . . . . . . . . . . . . . . . .  
3 D x . .  ..................... 
3 E x . .  ..................... 
I N . .  ...................... 
SN. ,  ...................... 

Uexp..  ..................... 
Utheor.. .................... 
A , . .  . . . . . . . . . . . . . . . . . . . . . . .  

7 .5  
8 .0  
8.0 

10.0 
11 .o  
8.0 

134.5 
264.3 
99.6 
21.7 
99.3 

298.2 
520.6 
36.5 

878.3 
886.6 
-8.3 

884.2 
890.9 
881.7 
706,3 
681.2 

3643.6 

886.6 
893.3 
884.1 
708.7 
683.6 

3646.0 

TABLE 25 
Experimental  crystal energies of several compounds of perovskite structure 

I KMgFs KNiFa 

134,5 
187.8 
99.6 
21.7 
99.3 

298.2 
593.3 
85.0 

923.0 
893 
30 

KZnFs 

134.5 
192.7 
99.6 
21.7 
99.3 

298.2 
628.0 
31.6 

909.2 
884 
25 

CsCdClr 

106.6 
92.2 
89.4 
19.1 
86.7 

277.5 
594.6 
27.2 

738.3 
709 
29 

CsHgCla 

106.6 
53.4 
89.4 
19.1 
86.7 

277.5 
669.9 
14.7 

762.3 
684 
78 

CaSnOs 

151.7 
137.4 
412.9 
47.5 

177.6 
- 504 
2143 

78 

3652 
3646 

6 

heat of formation from CsCl and HgC1, has a large negative value. 
The excellent agreement between the theoretical and experimental 
values of the crystal energy of CaSnOs is probably accidental. 

7 .  Heats of solution of alkali ions and of halide ions 
In  order to test the correctness of the Born equation for calcu- 

lating crystal energies, Fajans and Schwartz (163) calculated 
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values for the differences in the heats of solution of alkali ions 
and of halide ions by combining the value of the crystal energy 
of a salt with the value for its heat of solution. The sum of the 
crystal energy and the heat of solution of a given salt is equal to 
the sum of the heats of solution of anion and cation, as can be seen 
from the following thermochemical equations : 

[MXI = (;\.I+) + (X-) ; AH = UM, 

[UX] + n HzO 

M+ (as)  + X- (as)  = (M+) + (X-) + n HzO; aH = WM+ + Wx- 

= M+(aq) + X-(aq) ; AH = - L,, 

The third equation is obtained by subtracting the second from 

W,+ + WX- = u,, + L,, (75) 

TV is the heat of solution of an ion while L is the heat of solution 
of a salt. From the above relation between W ,  U ,  and L, we ob- 
tain the following expressions for the difference in the heats of 
solution of two cations X f  and N or two anions X and Y. 

the first, so that 

WX- - "Y- = ('MX + 'MX) - ('XY + 'XY) 
Thus for two binary salts having a common anion the difference in 
the value of U + L for each salt is equal to the difference in the 
heats of solution of the cations, and similarly for two binary salts 
having a common cation W,,+ - WN+ should be independent of 
the common ion of the two salts, so that for the case of the alkali 
halides four independent values of W,,+ - WN+ can be obtained, 
one corresponding to each of the four halogens, and five independ- 
ent values of Wx- - Wy-. The crystal energies which Fajans 
employed in these calculations were obtained by using the value 
9 for the repulsive exponent n for all crystals, and the values 
of TI,+ - WN+ and Wx- - Wy- showed pronounced trends. 
Fajans' calculations have been repeated using the crystal energies 
obtained in the previous sections of this paper. Table 26 gives 
Fajans' values for the heats of solution of the alkali halides a t  

(77) 
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F 

Li, ......................... - 1 . 0  
Na . . . . . . . . . . . . . . . . . . . . . . . . .  - 0 . 6  
K . . . . . . . . . . . . . . . . . . . . . . . . . .  4 . 2  
R b  . . . . . . . . . . . . . . . . . . . . . . . . .  5 . 8  
cs . . . . . . . . . . . . . . . . . . . . . . . . .  8 . 4  

infinite dilution, and table 27 the values of Wl - W z  a t  infinite 
dilution. The figures in light print in each row give the value of 
U>Ix + Lhlx for the salt whose anion is indicated at the head of 
the column and whose cation is given a t  the left of the row. The 
figures in heavy type give the values of the differences in the heats 
of solution of various pairs of ions. The consistency in the results 
is much better than that obtained by Fajans. There are, how- 

c1 Br I 

8 . 8  11.7 14.8 
-0.9 0 . 1  1 . 8  
- 4 . 1  - 4 . 8  - 4 . 9  
- 4 . 5  - 6 . 0  - 6 . 5  
-4 .7  - 6 . 7  - 8 . 2  

WBr--WI- 

9.3 

8.6 

8.9 

8.8 

8.9 

1 

185.5 
22.9 

162.6 
18.6 

144.1 
6.4 

137.7 
9.8 

127.9 

TABLE 27 
idration between alkal i  i ons  and between halide ions 

Li 

Xa 
WN&+ - W K +  

K 
w K +  - tvRb+ 

R b  
WRb+ - WCs+ 

CS 

WLi+ - W N ~ +  

‘F- - wC1 F 

239.1 

214.4 
19.8 

194.6 
7.0 

187.6 

181.2 

24.7 

6.4 

37.0 

36.1 

34.3 

33.2 

37.0 

7.3 

8.1 

7.3 

7.9 

7.4 

- 
c1 

194.8 
23.6 

171.2 
18.2 

153.0 
6.6 

146.5 
9.7 

136.8 

202.1 
22.8 

179.3 
19.0 

160.3 
6.9 

154.4 
10.2 

144.2 

ever, certain discrepancies. Thus the value of WF- - Wcl- ob- 
tained from cesium fluoride and cesium chloride is higher than 
those calculated from the other salts. These discrepancies are 
probably to be attributed to errors in the crystal energies. They 
could be made to disappear, for example, by increasing the crystal 
energies of cesium chloride, cesium bromide and cesium iodide by 
3.5 kilogram-calories per mole and the energies of lithium chlo- 
ride, lithium bromide, and lithium iodide by 2.0 kilogram-calories 
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CRYBTAL 

LiH..  . . . . . . . . . . . . . . . . . . . . . . . . . .  21.6* 
NaH. .  . . . . . . . . . . . . . . . . . . . . . . . . . .  12.81 
KH. .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 
RbH . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12$ 
CsH. .  . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

per mole. If this correction were made, the values of W,,+ - 
WN+ and Wx- - Wy- would be consistent and would remain 
consistent as long as all the crystal energies were then in error by 
the same amount. Thus there is an uncertainty in the values 
of all crystal energies, this uncertainty being of the same magni- 
tude and direction as was found from the discrepancies in the elec- 
tron affinities of the halogens and in the proton affinity of 
ammonia. 

If the absolute value of the heat of solution of one alkali ion or 
one halide ion were known, then the results obtained would per- 
mit an evaluation of the heats of solution of all the other ions. 

Q I S D E  _____--- 
123.8 3 8 . 3  5 1 . 9  1 6 . 4  
118.0 2 6 . 0  51 .9  1 6 . 4  
9 9 . 6  21 .7  51 .9  1 6 . 4  
9 5 . 9  19 .9  51 .9  1 6 . 4  
8 9 . 4  19.1 51 .9  1 6 . 4  

TABLE 28 
Crystal  energies of the alkali  hydrides 

u 
219.2 
192.3 
168.8 
163.3 
156.0 

uo 
218.0 
191.1 
167.6 
162.1 
154.8 

-- 

* Landolt-Bornstein Tables, 1st Erganxungsband. 
t Hagen and Sieverts (165). 
3 Unpublished measurements of A. hlonossohn used by Iiasarnowsky (167). 

Webb (171) has attempted to calculate the absolute heat of solu- 
tion of an ion, but his results are not sufficiently reliable for this 
purpose. 

8. Compressibilities of the alkali halides 
The electron affinity of hydrogen being known with consider- 

able certainty, the Born-Haber cycle may be employed to evalu- 
ate the crystal energies of the alkali hydrides, all of which have 
the sodium chloride structure. The Born equation for the crystal 
energy may be used to evaluate the repulsive exponent for 
each hydride, and by means of equation 56 the compressibili- 
ties may then be calculated. Kasarnowsky (167) has carried out 
such calculations. He measured the densities of the hydrides 
(166) and calculated the lattice constants from them. Recently, 
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uo 

218.0 
191.1 
167.6 
162.1 
154.8 

however, Zintl and Harder (173) have measured the lattice con- 
stants directly by x-rays and it was thought desirable to repeat 
the calculations, using these latest values of the lattice constants 
and the thermal data of this article. Table 28 summarizes the 
data used. The crystal energies in the last column of the table are 
obtained by combining the quantities tabulated in the previous 
columns. 

Table 29 gives the values of the repulsive exponents and com- 
pressibilities calculated from the crystal energies and the lattice 

ao 

4.084 
4.880 
5.700 
6.037 
6.376 

TABLE 29 
Compressibilities of the alkali hydrides 

CRYSTAL 

LiH ........................... 
NaH .......................... 
KH ........................... 
RbH .......................... 
CsH. .......................... 

n 

4.40 
5.24 
5.85 
6.63 
6.97 

X 

aq. cm. per dyne 
2.32 X10-l2 
3.78 X10-12 
6.16 X10-12 
6.67 X10-l2 
7.83 X10-12 

constants. 
by the following equation 

The relation between n and compressibility is given 

No experiment,al determinations of the compressibilities have been 
made, and so a check upon these calculated values is not avail- 
able. Comparison between calculated and observed values would 
afford a direct test of the essential correctness of the Born equa- 
tion for the crystal energy. 

V. CRYSTAL ENERGIES OBTAINED INDEPENDENTLY O F  THE BORN 
THEORY 

In the preceding pages the Born theory of ionic crystals has 
been presented. Several attempts have been made to determine 
crystal energies independently of the Born theory; these will now 
be discussed. 
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I .  Quantum mechanical treatment of lithium hydride 

Recently Hylleraas (13) has treated the many electron problem 
of the lithium hydride lattice with the aid of the quantum mechan- 
ics. Without the introduction of any empirical data, the lattice 
energy of lithium hydride was calculated to be 219 kilogram-calor- 
ies per mole and the lattice constant 4.42 A. The value of the 
energy determined from the Born cycle (table 17) is 218 kilogram- 
calories and the experimental value of the lattice constant is 
4.084 A. (173). The agreement in the values of the energy is 
seen to be excellent, providing a remarkable substantiation of the 
quantum mechanical treatment. The theoretical and experi- 
mental lattice constants differ by more than 8 per cent, but Hyl- 
leraas pointed out that  the use of more accurate eigenfunctions 
would doubtless give a more accurate value of the lattice con- 
stant without appreciably changing the energy. 

Hylleraas has thus demonstrated the possibility of giving a 
fundamental theoretical treatment of the structure of crystals, 
but unfortunately it is impractical to apply the treatment to 
crystals containing eight- and eighteen-shell ions because of the 
great complexity of the calculations. 

2. Slater’s treatment of the alkali halides 

Slater (32) has evaluated the crystal energies of a number of 
alkali halides directly from his measurements of the compressi- 
bility and its pressure coefficient, both extrapolated to 0°K. He 
expressed the crystal energy at 0°K. as a Taylor’s series in r in 
the region near r = T O ,  the experimental data giving the values of 
the first, second, and third derivatives. Extrapolating to large 
values of T ,  he showed that his series approached the value result- 
ing from the Coulomb energy alone, and then combined it with 
the Coulomb expression to obtain values of the crystal energies. 
Table 30 gives his results. The crystal energies calculated from 
the Born formula (table 17) are included for comparison. 

The crystal energies determined with the aid of the Born 
equation were calculated by using lattice constants determined 
at room temperatures, so that these energies represent the crystal 
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SUBSTANCE 

LiF ............................ . . . . . . . .  
KF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LiCI. .................................. 
XaC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KC1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LiBr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KaBr.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KBr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RbBr. . . . . . . . . . . . . .  . . . . . .  
KI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
R b I .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

energies a t  room temperatures, while the values of Slater are for 
0°K. The difference in crystal energy between two tempera- 
tures depends upon the heat capacity of the crystal and its ions. 
For the alkali halides this amounts to approximately 2 kilogram- 
calories between 0°K. and 25°C. so that the Born values should be 
increased by this amount in order to compare with those of Slater. 
Slater estimates a probable error of 5 kilogram-calories in his 
results; hence the two sets of values may be said to be in rough 
agreement. 

TABLE 30 
Crystal energies determined f r o m  compressibility data and f r o m  the B o r n  formula  

U (Slater) 

23 1 
182 
189 
178 
164 
180 
169 
157 
152 
148 
147 

U (Born) 

239 
189 
192 
179 
163 
182 
171 
157 
151 
148 
143 

3. Direct thermochemical determination of the crystal energies of 
potassium iodide and cesium iodide 

Mayer (25) has recently determined directly the energy of ionic 
dissociation of potassium iodide and cesium iodide vapors. If 
these energies are added to the corresponding energies of sublima- 
tion, the crystal energies are obtained directly. The method is 
not of general applicability because the ionic dissociation of most 
salt vapors is too small to be measurable except at extremely high 
temperatures. Mayer reports 148.6 i 4 kilogram-calories and 
131 kilogram-calories for the crystal energies at 18°C. of potas- 
sium iodide and cesium iodide. The values determined from 
the Born formula (table 17) are 147.8 and 135 kilogram-calories, 
respectively. This provides a remarkable check of the Born 
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formula and hence a substantiation of the quantities, such as 
electron affinities, derived with its use. 
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11-otes added July 20, 1932: Since the submission of this article 
for publication, two important papers dealing with crystal 
energies have appeared. 

Throughout this article the Born treatment of ionic crystals 
has been employed, in which the crystal energy is expressed by 
the two parameter equation 

Ae2 B 
@ ( T )  = - - + - 

r rn 

Recently Born and Mayer (Z. Physik 75, 1 (1932)) have obtained 
a new expression for the crystal energy in which the inverse n’th 
power repulsive term is replaced by an exponential term (such as 
is suggested by quantum mechanics) and in addition, the energy 
due to the van der Waals’ attractive forces and the zero-point 
energy are taken into account. London (Z. physik. Chem. 11B, 
222 (1930)) has shown that the van der Waals’ potential may be 
represented by an inverse sixth power term. Just as in the 
original, this new formula for the crystal energy contains two 
parameters, to be determined from the properties of the crystal. 

Mayer and Helmholz (2. Physik 75, 19 (1932)) have applied 
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F ............................................ 
c1. .......................................... 
Br. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

the revised theory to the calculation of the lattice energies of the 
alkali halides and have employed the values obtained. in various 
thermochemical calculations, the results of which indicate their 
essential correctness. Table 31 shows the comparison between 
the electron affinities obtained by using the crystal energies 
calculated by Mayer and Helmholz (with the aid of the new theory, 
and by the author (on the basis of the old theory). 

The discrepancies vary from 0.8 kilogram-calorie for fluorine 
to 4.2 kilogram-calories for chlorine. Since the more refined 
treatment of the crystal lattice doubtless leads to more trust- 
worthy crystal energy values, the electron affinities calculated 
from them are consequently more reliable than those given in this 
paper, and may be considered to be correct within 3 kilogram- 
calories. 

TABLE 31 
Elec tron  a f in i t i e s  o j  the halogens 

I M A Y E R A N D  
HELYHOLZ I HALOGEN 

kg-cals. kg-cals. 

97.7  98 .5  
88.3 92 .5  
83 .2  87.1 
7 5 . 5  79.2 

The proton afinity of water vapor 
At the suggestion of Dr. G. H. Cady, I have calculated an 

approximate value for the proton affinity of water vapor by as- 
suming the crystal energies of the isomorphous crystals NH4C104 
and H30C10,-(HC104~ HzO)-to be the same. [X-ray oscillation 
photographs obtained by M. Volmer (Ann. 440, 200 (1924)) 
for each of these crystals show almost identical spacings and 
relative intensities of reflection, corresponding at  most to a small 
difference in the crystal energies if the Madelung constants are 
the same.] Applying the Born thermochemical cycle to each of 
these crystals, the proton affinity of water vapor, which is the 
heat evolved in the reaction 

Hz0 (9 )  + H+ ( 9 )  HsO+ (g) 
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can be calculated by means of the thermochemical equation 

‘HzO = ‘NHi + &NHI - &HzO + &HsOClOd - &NHC10& 

P N H o ,  the proton affinity of ammonia, has been previously 
calculated and found to be 206.8 kilogram-calories. The values 
of Q, the chemical heats of formation of the various compounds, 
are taken from International Critical Tables, Volume V. The 
value of PHzO is thus calculated to be 

PHzO = 206.8 + 10.9 - 57.8 + 100.4 - 78.3 
= 182 kilogram-calories. 

This value seems reasonable in comparison with the proton 
affinity of ammonia. 
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